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Summary-One-hundred and nine adult subjects were tested on two occasions using a set of computer 
administered letter series problems. Using methods introduced by Furneaux [In Eysenck, H. J. (Ed.), 
Handbook of abnormal psychology. New York: Basic Books, 19611, response times to items were analysed 
in order to provide estimates of item difficulties based on time to correct solution, rather than on 
probability of correct solution. Subject parameters of speed. continuance and accuracy were also 
calculated using both Furneaux (directly and indirectly) and classical methods. These ‘time based’ 
parameters were compared with subscale scores from the WAIS-R IQ test and parameters from two 
reaction time tasks: 1 and 2-bit choice reaction time and the ‘Odd-Man-Out’ task. It was concluded that 
the original Furneaux model performed sub-optimally with regard to parameter estimation. However, with 
some modifications made to these estimation procedures, the Furneaux parameters were shown to be both 
practical and useful estimates of subject performance on letter series problems. 

INTRODUCTION 

The investigation of the role played by individual differences in abilities that have been related to 
‘speed’ has been carried out either by factor analytic studies of test batteries (some of which are 
more ‘speeded’ than others) or by the measurement of times to solution of either individual items 
or blocks of items. The search for a speed factor independent of ‘g’ was motivated by the perception 
that the introduction and extensive use of time limit tests (e.g. the Army Alpha) could be 
handicapping the ‘slow but profound’ S . Much early work on the S was concerned with 
investigating the differential effect time limits of varying severity had upon individuals’ perform- 
ance. May (1921) reported a high correlation between scores on Army Alpha with both the 
standard time limit and with double the limit. Recently, Berger (1982) has given a detailed 
description of the ‘speed vs power’ controversy. 

The introduction of factor analysis enabled experimenters to search for a factor which was 
separate from g and on which the speeded tests of the battery loaded more heavily than the 
unspeeded. The first of such studies was by Sutherland (1934) who used factor analytic techniques 
to extract a speed factor independent of g from a test battery that included scores derived from 
the times taken to complete groups of tests. Mangan (1958) performed a similar analysis, again 
finding a separate speed factor (among others) which he included in a model of individual 
differences as a subsidiary to g. 

The existence of such a factor demonstrated that there was a psychometric factor underlying 
success on the speeded tasks of the battery and less so on the unspeeded. How such a factor was 
related to the supposed internal properties of the individual Ss could not be determined. Factor 
analysis of a battery of tests is, by its nature, unable to explain any more about test taking 
performance than the experimenter is willing to infer from a knowledge of the properties of the 
tests. Psychometric validity does not always equate with psychological validity. With the growing 
sophistication in the use of factor analysis and the availability of computers it was possible for Lord 
(1956) to rotate a set of factors derived from a battery of tests some 500 times where ‘the main 
guiding principle in all rotations was psychological meaningfulness, as interpreted according to the 
notions of the writer’. 

It was frustration with the methods of traditional psychometrics that led Eysenck (1953) to 
propose a new form of analysis of test taking performance that had the individual item as the 
fundamental unit of analysis rather than the test score. For the analysis of the processes underlying 
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the simple total correct score, more information other than simple right or wrong must be derived 
from each item. The most readily available information is the time to solution (or to failure or 
abandonment) on each item. He also suggested that IQ scores could be analysed in terms of their 
three major components (speed, persistence and accuracy) which might be largely independent. 
Some early work by Thorndike especially had previously indicated the possibility of extracting 
multiple measures from cognitive test performance. Thorndike, Bregman, Cobb and Woodyard 
(1927) suggested that two alternative approaches to a S’s performance on an item were possible. 
The first suggestion (and the one which was subsequently pursued to the exclusion of the other) 
was that a S should be scored on the basis of items answered correctly, with the time taken to 
answer each item being of only secondary importance. 

The second suggestion involved the time taken to solve an item. It may be proposed that 
individuals can differ in the speed at which they can complete an item in a similar way to their 
differing in probability of giving a correct response. A test can then be imagined in which all 
individuals can be expected to answer all the problems correctly, measures of individual difference 
being derived from the time each S takes to reach each answer. In such a test the data from an 
individual item could in fact be used as an indication of intelligence. Analogous to the probabilistic 
model, the time model allows difficulties to be assigned to items, based either on the average time 
needed to solve an item for a normal group, or on the time required for a fixed percentage of the 
group to pass. 

A typical battery of ability tests can be viewed in two parallel ways, either taking the number 
of items an individual passes as the primary data and giving some form of bonus to unusually quick 
performance, or taking the times to correct solution as the raw data to construct ability scales. The 
two approaches will lead to two different difficulty scales for the items of the test. one based on 
the probabilistic model, one on the time model. A relationship between the two sets of difficulties 
cannot be assumed. Similarly each S can be assigned a score or scores based on the probabilistic 
model, or on the time model. Again no necessary relationship need exist between these two sets 
of ability scales. 

Attempts to measure time based individual differences, and hence simultaneously time based item 
difficulties were hampered by technical difficulties, both camputational and in accurately measuring 
an individual’s performance. Slater (1937) recorded individual times to correct responses and from 
these derived for each S a speed score representing the average deviation of the S’s correct response 
times, from the mean time to solution for each item. Such speed scores from a variety of tests were 
strongly correlated though they were largely independent from g. Tate (1948) performed a similar 
analysis on individually timed items and again found a S’s speed to be independent of test content 
and item difficulty. 

Furneaux (1961) presented a model of human problem solving based upon the concept of a 
search process with the speed of the search process as one parameter (speed), how long the process 
went on before termination as a second (persistence), and how accurately the end of the search 
could be determined as a third individual difference parameter (accuracy). Fumeaux presented an 
algorithm by which the difficulty of an item and the speed of the problem solver could be 
simultaneously estimated from the times to correct solution of items. Furneaux’s main experimental 
results were concerned with showing that this time-based difficulty remained a constant property 
of an item and was not dependent upon the characteristics of the sample. 

Attempts to replicate Furneaux’s work were hampered by the difficulties associated with the 
technique of simultaneous assessment of item difficulty and S speed which meant that accurate 
estimates of difficulty could be made only at the expense of discarding some Ss’ data. Brierly (1969) 
in a ‘manual’ replication, stopped his analysis after only the first estimates of item and S 
characteristics had been made. Berger (1976), with the aid of a computer, could make many more 
iterative estimates of the required parameters but was unable to provide a full set of S parameters 
and also abandoned his analysis at a relatively early stage. 

White (1973, 1982) reformulated the basic Furneaux model, particularly altering the significance 
of the accuracy parameter and introducing the concept of latent traits. He developed a likelihood 
equation and by finding the set of item and S parameters that maximized the likelihood value of 
this equation, could directly estimate all the required parameters. However, even when this more 
efficient estimation technique White failed to provide all parameters for all Ss. 
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Recent research indicating a relationship between elementary cognitive-sensory perception tasks 
(choice reaction time and inspection time) and psychometric IQ has led to new theorizing on the 
nature of IQ differences (Eysenck, 1982). These new speed theories concentrate more on individual 
differences in the rate at which elementary tasks can be performed than on differences in how 
elementary tasks are structured to enable problem solving performance. Of course, while these tasks 
are described as elementary, this is only with respect to a gross rank order of all possible cognitive 
based tasks from simple sensory perception to non-linear dynamical systems analysis and say 
fractal geometry. 

The relationship between the speed models which explain the differences in intelligence in terms 
of differences in physiological processes (e.g. speed or accuracy of nervous conduction, oscillation 
of synaptic conductivity etc.) and those that address differences in test taking styles (fast but 
inaccurate, persistent but slow etc.) is unknown. Clearly the models could be linked in a hierarchy 
(efficient physiological processes leading to fast test taking style) or the relationship could be more 
complex, with underlying physiological properties defining a variable ‘cocktail’ of the psychological 
characteristics. 

The present study sets out to perform a Furneaux style analysis on data collected from a sample 
tested on two separate occasions in order to allow estimates of reliability to be made for both S 
and item characteristics. Attempts will be made to produce Furneaux-like parameters which can 
be computed for all Ss to give a full set of S parameters. These will then be compared with the 
results from reaction time tasks and WAIS-R general IQ tests administered to the same 
experimental group. 

Subjects 

METHOD 

A group of 109 Ss was recruited from local Government Employment Centres, by advertisements 
in local newspapers and magazines and from London Mensa (a restricted ‘high IQ only’ social 
organisation). All Ss were smokers. An approximately normal distribution of IQ was obtained by 
the recruitment of Mensa members and the pre-testing of some Ss from the job centre to ensure 
adequate sampling of both high and low extremes of IQ. The total sample distribution of full scale 
WAIS IQ is shown in Fig. 1 below. The age range of the 70 male Ss was from 17 to 60yr with 
a mean of 28.21 and an SD of 9.53. The age range of the 39 females was from 18 to 44 with a 
mean of 26.49 and an SD of 7.21. 

Design 

All Ss were tested on two consecutive working days (i.e. about one-fifth of the Ss were tested 
on a Friday and then on the following Monday) as part of a study investigating the effects of 
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smoking on reaction time tasks and the relation of reaction time performance and IQ, as well as 
the S of the present paper (further details of experimental design as related to the smoking and 
reaction time tasks are reported in Frearson, Barrett & Eysenck, 1988). 

Each S performed on one of two parallel letter-series tasks on each of the 2 days, the order of 
the two tasks being counter-balanced so that half the Ss performed first on Test A and half first 
on Test B. Each S also performed two reaction time tasks on each day, a version of the Jensen 
choice reaction time task and the Odd-Man-Out task (Frearson & Eysenck, 1986). 

The WAIS-R intelligence test was administered to all Ss with the sub-tests split over the 2 days 
of testing. All the Ss except numbers l-7 and 9-22 (i.e. 88 out of the 109 Ss) were also given a 
20 min version of the Raven’s Advanced Progressive Matrices (Frearson & Eysenck, 1986). 
Computer administered versions of the Eysenck Personality Questionnaire and the I, (IVE) 
(Impulsivity, Venturesomeness, Empathy; Eysenck, Pearson, Easting & Allsopp, 1985) were also 
given to all Ss. 

Apparatus 

All experimental control, stimulus presentation and data acquisition was controlled by an ACT 
Sirius 1 microcomputer. For the two reaction time tasks, signal priming, detection and timing were 
implemented via a Biodata Microlink unit comprising modules RR8 (8 channel reed relays), two 
CC8 (8 channel digital inputs) and two TIM (clock module timing in msec, units up to 9999 msec 
count). The items of the letter series tasks were presented via the Sirius VDU; control of 
presentation and response detection being implemented directly by the Sirius, using the Biodata 
TIM module and the Sirius’ internal clock to extend the timing range beyond that of the TIM 
module (up to 9.999 set then starts again at 0 msec). 

Procedure for the letter series task 

Two parallel sets of letter series problems were created from the Nufferno test (Furneaux, 1955) 
by taking items of the speed test and the power scale to give a set of 28 items of widely varying 
difficulty. A second set of items was then created by taking each of the 28 items and repeating the 
patterning of the letters though starting at a different part of the alphabet. This gave items of the 
same ‘logical’ format though physically different. At no point did any S comment on any similarity 
between any items. The parent and parallel items were assigned at random to the two experimental 
item sets. Each of the experimental sets was then arranged into cycles of 7 of increasing difficulty 
using the ‘difficulty’ assigned in the Nufferno test to the parent. The parent and its parallel item 
were assigned individually to cycles so they did not appear in the same chronological position in 
the two sets. Table 1 gives the 56 items along with the difficulties that were assigned to them by 
the Furneaux procedure (see below). 

The S was seated at the Sirius. Each item appeared on the screen along with a display of the 
alphabet and a message to press either the ‘got it’ or the ‘give up’ key as soon as they either knew 
the answer or wanted to go on to the next item. The ‘got it’ and ‘give up’ keys were two of the 
Sirius’ numeric keys with stick-on faces with the legends ‘give up’ or ‘got it’. On pressing the ‘got 
it’ key the Sirius put up a new screen asking the S to key in their answer, which was done using 
the standard QWERTY keyboard. It was explained to the S that this procedure was necessary to 
“equalize for the effect of some people being more familiar than others with the keyboard”. Other 
than this no mention was made of the fact that Ss’ responses were being timed, Ss being told only 
to try their best to get the items right though not to make any ‘wild guesses’, pressing the ‘give 
up’ key if they were doubtful about an answer. 

After the Ss had keyed in their responses the Sirius cleared the screen and displayed a message 
asking the S to press the spacebar when ready for the next item. This procedure was used to try 
and stop Ss taking rest breaks in between items during their nominal solution time, in line with 
the suggestions of Berger (1982). Ss who gave up on an item were immediately presented with the 
‘press spacebar for the next problem’ order. 

The time between the presentation of the item and the Ss’ pressing either the ‘give up’ or ‘got 
it’ key was recorded, as were the times taken by the S to find the answer key and the length of 
the rest interval before the S requested the next item. 



The Furneaux model of human problem solving 243 

Table I (parts I and 2). The 1st and 2nd series of 28 items used in the Fumeaux 
task: their correct solution and the Fumeaux derived time based difficulties 

Item Solution Difficulty 

Part I 
PQQRRRSSSS? 
DEFUV? 
MNOMNPMNQMNR? 
BEHCFIDG? 
QSTUTUWXYXYABCBC? 
SYXWYXTVUTVUUSR? 
KLKLLJMLI? 
BWCXBWCXB? 
LZLLYLLLXLLWLL? 
OPQOPQRSTRSTU? 
HZGHZFGHZEFGHZ? 
ZACFJNQS? 
KLMNNOPQRQSTUVTWXYZ? 
LMNJKLMHIJKL? 
MNOMNOPQRP? 
DCVWBX? 
FXEFXDEFXCDEFX? 
TUVSTUVRSTUV? 
ZAXZZXZYXZXXZ? 
DPONMEFLKJGHI? 
RSTPQRSNOPQR? 
OPPQRRSTT? 
AXAYBXBYCXCY? 
.RRSSTUUVVWXXY? 
LMLMJKNONOJK? 
WEGYIKAMO? 
DEFDFGHIHJKLJLMNO? 
RWSTVUUVWTSR? 

Part 2 
GHIGHIJKLJ? 
AYAXBYBXCYCX? 
WXYWXZWXAWXB? 
FYEFYDEFYCDEFY? 
YAWYZWYYWYXWY? 
GHIGIJKLKMNOMOPQR? 
TUVRSTUPQRST? 
CDDEEEFFFF? 
CDEVW? 
EZDEZCDEZBCDEZ? 
ADGBEHCF? 
WXZCGKNP? 
XDCBDCYAZYAZZXW? 
QRQRRPSRO? 
HIIJKKLMM? 
AZAAYAAXAAWAA? 
BCDBCDEFGEFGH? 
EFEFCDGHGHCD? 
RTUVUVXYZYZBCDCD? 
BCDEEFGHIHJKLMKNOPQ? 
YZAWXYZUVWXY? 
DUEVDUEVD? 
DOCNBM? 
BBCCDEEFFGHHI? 
HIJGHIJFGHIJ? 
XFHZJLBNP? 
FSRQPGHONMIJK? 
CHDEGFFGHEDC? 

T 
W 
M 
J 

: 
N 
W 
V 
V 
D 
T 
W 

6 
A 

: 
W 
I 
L 
U 
D 
Y 
P 
C 
N 
X 

K 
D 
W 
B 
W 

Q 
N 
G 
X 
A 

:, 
V 
T 
N 
V 
I 
I 
F 
N 
S 
U 
A 
I 
E 
D 
L 
1 

5.63 
5.45 
5.61 
6.55 
7.81 
7.15 
7.72 
5.99 
5.99 
6.03 
6.46 
7.24 
7.74 
7.47 
5.74 
6.18 
6.25 
6.03 
6.63 
7.42 
7.38 
5.88 
5.73 
5.74 
6.53 
6.98 
7.73 
8.52 

5.54 
5.93 
5.92 
6.44 
6.67 
7.40 
7.40 
5.67 
5.67 
6.05 
6.66 
7.29 
7.86 
8.23 
5.82 
5.91 
6.17 
6.56 
7.60 
7.57 
7.39 
6.03 
6.34 
5.75 
6.47 
7.08 
7.37 
7.59 

Ss were given a set of 8 practise items, with the experimenter present, to familiarize themselves 
with the procedure, the experimenter then judging whether the S required more practise or could 
be allowed to continue with the experimental items. The order of presentation of the items was 
fixed, items being presented in cycles of 7 of increasing difficulty (using the difficulties of the parent 
items in the Nufferno test as a guide). If a S either gave up or keyed in a wrong answer to two 
consecutive items the nest item presented would be the item at the start of the next cycle of difficulty 
(i.e. an extremely simple item). This leads to a crude form of tailored testing in which Ss are only 
ever presented with items of such difficulty that could reasonably be expected to solve. 

Procedure for Choice Reaction Time task (CRT) 

Decision times (DT) and movement times (MT) were assessed over conditions of 1 and 2 bits 
of decision information, corresponding to two and four lights on show respectively. Four sets of 
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10 trials were given, the order of conditions being fixed for all Ss. The first set of trials was at l-bit. 
then 2-bits, then a second set at 2-bits and a second set at l-bit. Covers were placed over the lights 
not used in any condition. 

The Ss were seated in front of the response box and used their preferred hand for all 
button-pressing. The Ss were given as many practise trials on the l-bit condition as were required 
before the S expressed confidence in the task. 

Each trial was started by a warning tone of 1000 Hz frequency and 54 msec duration given at 
approx. 70 dB by the Sirius. The tone was followed by a random delay of l-4 sec. If the S’s finger 
was on the home button the target light was illuminated. (If the S was not depressing the home 
button the experimenter received a warning message from the Sirius and could restart the trial after 
having ensured the S was holding down the home button.) The sequence of positions for the target 
light were randomized for each S. The DT clock was started at the onset of the light and was 
stopped by the S releasing the home button. This action also started the MT clock which was 
stopped by the S depressing the target button. The DT, MT and light position were recorded by 
the Sirius. Further details of the CRT procedure are given in Frearson et al. (1988). 

Procedure for Odd-Man-Out task (OMO) 

The Odd-Man-Out paradigm used the same response box as the CRT task. Each stimulus in 
the OMO task consisted of 3 out of the possible 8 lights being lit. The 3 lights were so arranged 
that the distance (the number of intervening light positions) between the left light and the centre 
light was different from the distance between the centre and right lights. Such displays were 
explained to the S as consisting of a pair of lights (the two closest together) with an ‘odd-man-out’. 
With 8 light positions there are 44 such possible displays. The present study used 12 different 
displays of which 6 were left-right mirror images of the other 6 (Fig. 2). These 12 were chosen as 
those which were found to have the best correlation with Raven’s matrices score shown by Frearson 
and Eysenck (1986). 

The Ss were instructed, starting with their finger on the home button, to press the button 
corresponding to the ‘odd-man-out’ light. Each display was presented to the S 5 times, making a 
total of 60 separate trials. The 60 trials were assigned to two groups (three of any display in one 
group, two in the other). The order of presentation of displays was randomized within each group. 
After every 15 trials the task was suspended, to allow the S to rest, the task being restarted by 
the experimenter at the S’s instigation. 
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Fig. 2. The 12 Odd-Man-Out displays used. 
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Trials where the .S produced an error (pressed a button other than that corresponding to the 
odd-man-out) were repeated at the end of each block. (If errors occurred in these repetitions the 
trial was given again after all the other errors from that block had been repeated.) If on any one 
block more than 10 errors occurred, the program was halted to allow for more practise. Ss were 
instructed in the task and then given a batch of 8-18 practise trials consisting of displays of varying 
complexity until they expressed confidence in the task. Ss were told to be as quick as possible in 
all button-pressing but not to be overly concerned about the possibility of making an error as all 
errors would be repeated. 

The OMO task was implemented in a similar way to the CRT task. Decision times, movement 
times, type of response (right or wrong) and the chronological sequence of the trial were logged 
by the Sirius. 

The OMO task has been shown to give higher correlations with IQ scores than straightforward 
CRT (Frearson & Eysenck, 1986) and is hypothesized to involve more of the cognitive factors 
involved in problem solving. In terms of complexity the OMO lies between the CRT parameters 
and the simplest of the letter series problems. Further details of the implementation of the OMO 
task are reported in Frearson, Barrett and Eysenck (1988). 

STATISTICAL ANALYSIS 

Furneau.r analysis of letter series problems 

The Furneaux (1961) model specifies a simplified human problem solver characterized by three 
parameters: speed, accuracy and continuance (persistence). Furneaux’s problem solver is made up 
of two ‘black boxes’, a ‘problem box’ and a ‘time-switch’. When a problem is input the time-switch 
comes on and allows the problem box to start working. 

The problem box has two components: a search mechanism and a comparator. The search 
mechanism sets up ‘networks of neural mechanisms’ and uses each network to try and solve the 
problem. The output of each of these ‘networks’ is tested by the comparator to see if it is an 
acceptable solution to the problem. If it is not, the search mechanism sets up a new, more complex 
network. If the solution is acceptable, the problem solver gives it as its answer to the input problem. 

Each of the three processes has a parameter associated with it. The ‘continuance’ of the problem 
solver is the average length of time the time switch remains on after input before it turns off the 
problem box (and gives ‘give up’ as the answer). The speed of the problem solver is related to the 
rate at which the search mechanism can set up new networks. The ‘accuracy’ of the problem solver 
is how ‘fussy’ the comparator is in accepting or rejecting a possible solution as adequate. 

Furneaux specifies that the search mechanism is not operating at random but rather is highly 
systematic. The first network set up will be comprised of only one neural unit, and the search 
mechanism will go through all possible one unit mechanisms before it sets up a network where two 
units are brought into association. Similarly a three unit network will only be tried when al! possible 
two unit networks have been tried and found wanting and so on. 

The time for the search mechanism to reach an adequate solution, then, will increase 
exponentially as the item complexity increases. The function relating solution time, S speed and 
item difficulty, will be of the form: 

t = exp(mD)/rate (1) 

where t = solution time; D = item difficulty; m = a constant. 
Taking logs 

log (t) = mD - log (rate) (2) 

Re-naming [- log (rate)] as S’s speed constant K 

log(t) = mD + K (3) 

This relationship, however, will only hold for solution times where the solution is a correct 
response, indicating that the solution has come from a completed search process. Wrong responses 
will be the results of truncated searches; abandonments will have been produced by the action of 
the time switch. 
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1.i. select reference items 

l.ii. select subjects of high continuance. 
split into 3 groups fast, medium and slow. 

l.iii. calculate difficulty of each reference item. 
D = mean tc from medium group. 

l.iV. calculate a speed for each subject. 
K = mean (tc - D) over the reference items. 

1.V. calculate a "can't be less than" estimate of critical difficulty for each subject. 
CD = largest (tc - D) - smallest ta 

2.1. create a matrix of "reduced times" 
each element = tc - K 

2.ii. calculate a difficulty for each item 
D = mean (tc - K) 

Z.iii. compare each item's difficulty with each subject: critical difficulty 
discard any element where CD < D 

2. Obtain a better estimate of sublsctr critical difficult-i 

3.1. 

3.11. 

3.fii. 

3.iv. 

3.v. 

3.vi. 

where: 

calculate a difficulty of certain abandonment for all subjects. 
cDa = largest ta - K 

calculate mean of the abandonment times greater than cDa for each subject. 
Ta = mean ta (where ta > cDa) 

calculate deviations of ta (where ta > cDa) from Ta. 

use deviations from all subjects to compute variance of ta (where ta > cDa). 

Va = mean (Ta-ta) 

for each subject calculate 
effective minimum ta = 

for each subject calculate 
CD q largest (tc - D) 

"effective minimum" abandonment time 
Ta - (Z*$Va) 

a new critical difficulty. 
- effective minimum ta 

tc = log time to correct solution 
ta r log time to abandon 
K = subject's speed 
D c item difficulty 

Ta = mean of a subject's unambiguous abandonment times 
Va = variance of all unambiguous abandonment times 
CD = subjects critical difficulty i.e. difficulty at which subject might first abandon 
cDa= subject's difficulty of certain abandonment i.e. difficulty at vhich subject will alvays abandon 

Fig. 3. The Furneaux algorithm for simultaneous assessment of item and S parameters. 

Assigning a difficulty value based on time to correct solution for each item requires the 
simultaneous calculation of item difficulties and Ss’ speed constants, as solution time is related to 
difficulty by only one equation: 

log t =mD+K (4) 

Rather than attempt to solve for all the item difficulties and S’s speeds simultaneously, the 
Furneaux analysis attempts to approximate first one set of parameters and then use these to 
estimate the other. Figure 3 gives a diagrammatic description of the Furneaux algorithm. A set 
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of ‘reference’ items is first selected. These are the simplest of the items (i.e. the 8 items that were 
originally derived from the Nufferno speed scale). Inspection of the percentage of Ss answering 
these correctly confirmed that they were the items of the lowest classical difficulty to ensure that 
there are no (or at least very few) abandonments on any of them. (As abandonments and indeed 
wrong answers are produced by a different mechanism, the estimation at this stage can only work 
where there is no chance of an abandonment having taken place.) 

Now by looking at their abandonment times Ss are split into high continuant and low continuant 
halves (simply on the basis of Ss’ average time to abandonment). The highly continuant Ss are 
split into three groups, a fast, medium and slow group, on the basis of their average solution time 
for the set of reference items. 

Now an estimate of the difficulty for the reference items is possible given two assumptions. From 
equation (4): 

Assumption I: m = 1. (The value of m is largely a matter of convenience, altering its value will 
simply multiply all D values by some constant factor.) 

Assumption 2. The average value of the speed constant for the medium speed group = 0. Again 
altering this value will simply add a constant to all values of D. 
So for each item in the reference set: 

Mean value of (log t) = D (V 

Now it is possible to calculate for each S in the medium group a speed constant using his response 
times to the 8 reference items. Each S’s speed constant (under the two assumptions above) will 
be the average deviation of the S’s solution time for an item from the problem’s difficulty. (The 
speed constant takes a negative value for faster than average Ss and a positive value for slow Ss. 
In effect it is a ‘slowness’ rather than a ‘fastness’ measure. The authors however will follow 
Furneaux’s original usage of the term.) 

K = 1 (log t - D)/number of reference items. (6) 

Finally a value for the critical difficulty level for each S is calculable. This is the difficulty level for 
any S at which there is first a possibility of his abandoning an item. Clearly for a very large set 
of items this parameter could be taken to be just the difficulty of the easiest item that was 
abandoned. For a small set of abandoned items the lowest possible difficulty at which there might 
be an abandonment must be lower than the lowest actual difficulty of the abandoned items. How 
much lower is clearly a function of how much variation there is in the Ss’ solution times as it is 
only when the solution process (of variable duration) is beaten by the ‘time switch’ (of constant 
duration) that an abandonment takes place. For an initial estimate it is important only that the 
value of critical difficulty should not be an over-estimate, as an underestimate will be increased in 
subsequent iterations whilst an over-estimate will lead to the inclusion of ambiguous data (i.e. data 
that are being ‘filtered’ by the action of the time switch) in the estimation of speed and difficulty 
parameters. To obtain a ‘can’t be less than’ estimate of critical difficulty the largest deviation 
between an item solution time and its difficulty is subtracted from the smallest of the abandonment 
times. 

It is necessary that the values of these critical difficulties be greater than the difficulties for the 
reference items in order for the original assumption-that the solution times of this medium speed, 
high continuance group could be used to estimate item difficulties of the reference items-to be 
shown to have been justified. 

Now by using the same method as above a value of K (speed constant) and CD (critical difficulty 
level) for each S can be calculated and using these a D (difficulty) for each item. The speed constant 
(K) of each S is subtracted from each correct solution time to produce a matrix of reduced times. 
Using these reduced times the difficulty value for each item is given by the average value of the 
reduced times for that item. 

Now the new difficulties for the items can be compared with the critical difficulties of the S and 
any S/item pairings where the S’s critical difficulty (CD) is smaller than the item difficulty are 
discarded. After a series of iterations, then, a difficulty will have been assigned to each of the items. 

The wastefulness of the above process (in terms of the number of Ss who are being left out of 
the matrix of reduced times) can now be lessened by obtaining a more accurate estimate (higher) 



218 w. i=REARSON er al. 

of each S’s critical difficulty. First find the critical difficulty for abandonment (cDa), i.e. that 
difficulty above which the item will always be abandoned, by taking the largest abandonment time 
for each S and subtracting the S’s speed constant (K). Now all abandoments of items of difficulty 
higher than the cDa can be taken as unambiguous. The mean for each S of these unambiguous 
abandonments (expressed as Ta) can now be calculated. 

Having identified a population of unambiguous abandonments, estimates of the distribution of 
abandonment times can be made. In particular the variance of abandonments across all Ss can 
be calculated. 

Furneaux (1961) reports the distribution of abandonments for different Ss to be uniform enough 
to justify their combination. However his description of individual statistics is too scant to 
reasonably evaluate the claim. The combination of individual statistics is necessary to be able to 
produce any form of distribution statistics given the small number of abandonments. Berger (1976) 
attempted an individual level analysis and found it impossible to proceed because of the high 
proportion of Ss who could not have estimates of their variability of abandonment made. 

Given an estimate of the variability of abandoments an estimate of the effective minimum 
abandonment time can be made, this being taken at the level of two standard deviations below 
the mean. 

Effective minimum abandonment time = Ta - (2*J Va ) (7) 

This effective minimum is then used to calculate a CD for each S as before using the effective 
minimum in place of the smallest abandonment time. This will give a higher value for CD and hence 
allow more data for the calculation of D-values in a new set of iterations as above. 

Choice Reaction Time 

The data from the two sets of 10 trials on each condition are combined to give from each day 
a set of 20 DTs and 20 MTs on each of l- and 2-bit conditions. 

Both DT and MT data were ‘corrected’ by replacing the largest value within any condition with 
the mean value of the other 19 DT/MT in that condition, a process first suggested by Barrett. 
Eysenck and Lucking (1986). Data were also passed through a validity check. such that if a DT 
was < 140 msec or longer than 999 msec or an MT was ~90 msec or > 999 msec, the DT MT 
would be replaced by the mean DT/MT for that condition. 

The choice reaction time data were then analysed to give a median DT and MT for each 
condition and the SD of DT and MT for each condition. In addition a ‘slope’ measure was obtained 
by subtracting the median DT obtained for the l-bit trials from the median DT for the 2-bit trials. 

Odd Man Out 

The median DT and MT of the five correct responses for each display were calculated along with 
the range which was simply the value of the largest DT/MT minus the smallest. These measures 
were chosen over the mean and standard deviation because of skewness in the DT/MT data as has 
been suggested for other DT measures by Brownlee (1975) and Winer (1971), and because of the 
small number of observations. Also the number of errors made during the task was calculated. 

Previous analysis of the data from this study had shown that for each of these four parameters 
the values for the 12 displays used gave a strong general factor when submitted to factor analysis. 

Given the adoption of a general factor solution the arithmetic mean of the 12 individual scores 
could be taken as a reasonable measure of performance on all 12 different displays. The ‘factor 
scores’ were computed by applying unit weights to all variables. The 4 factor scores are then 
ODT.FS for the 12 median decision times, OMT.FS for the 12 movement times, ORRNG.FS for 

the 12 ranges of decision times and OMRNG.FS for the ranges of the movement times. 

RESULTS 

The simultaneous assessment of item d#kulties and S speeds and critical d@culties by the Furneaux 
iteration 

The Furneaux iteration to produce estimates of item difficulties and S speed and persistence 
parameters was performed on three sets of data. These were the data from all Ss on day 1, which 
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for half the Ss consists of responses to the first set of letter-series items, and to the second set of 
letter-series items for the rest of the Ss; data from all Ss on day 2, and data from all Ss on both 
days i.e. responses on all items from all Ss. These three analyses would allow estimates for 
reliability of both S and item parameters. 

The Furneaux procedure as described above consists of a pair of nested iteration loops. The inner 
loop (moving individual solution times in and out of a matrix of ‘reduced’ times) was performed 
three times on each successive run, this being an arbitrary value set by inspection of the reduced 
matrix on successive runs through this loop both on these data and on a set of simulated data. 
The form of the matrix appeared to remain stable after the first or second time through the loop. 

The outer loop (re-calculating values for critical difficulties and then using these for forming a 
new matrix of reduced times) was performed 20 times on each run. The progress of the iteration 
was monitored by (at the end of each outer loop iteration) correlating the 56 item difficulties 
obtained with the difficulties produced by the last iteration. In all cases this correlation rose to 
excess of 0.99 within 10 iterations and remained at this level on each successive iteration. The 
stability of the derived difficulty values is therefore extremely high. 

The set of parameters of primary interest at this stage is the item difficulties as it is to be expected 
that several Ss will not provide a full set of parameters from this procedure. However with a stable 
set of item difficulties it will be possible to calculate for every S a variety of speed and persistence 
parameters. 

Item d@culties 

Each item has been assigned three different estimates of its difficulty, one based on data from 
the 54/55 Ss who ‘attempted’ it on day 1 (though of course by the nature of the tailored testing 
procedure the number who actually answered an item is variable), one based on the 54.55 Ss who 
attempted it on day 2, and a third based on data from all the Ss, irrespective of when they answered 
the item. 

Comparison of the first two difficulties provides a rigorous test of the generality of the Furneaux 
derived difficulties; as they represent the case of two unrelated samples doing the same items at 
different times, any correspondence between difficulties can only be attributed to the item’s 
contents. 

The difficulties of the first set of items from day 1 Ss are incomplete in that item 7 was not 
answered correctly by any of the sample and so cannot be assigned a difficulty, likewise the day 
2 Ss failed to provide a correct answer for item 28 which again cannot be assigned a value. The 
correlation between the two sets of data is 0.914 when items 7 and 28 are removed. The difficulties 
for set two of the letter-series show an even greater correspondence between day 1 and day 2 Ss 
(difficulties are correlated 0.956). 

The conclusion of these comparisons is that the Fumeaux time based difficulties have a reality 
based solely upon item content. Though the actual values that will be derived from a particular 
group are arbitrary, a difficult item for one group remains a difficult item for another group. 

The choice of actual value to assign to an item for use for further analysis being arbtitrary, it 
would seem sensible to use the values obtained by the Furneaux iteration that was performed on 
the whole data set. (These difficulties correlates with day 1 difficulties on set 1 at 0.961 and set 2 
at 0.987, and with the day 2 difficulties at 0.991 and 0.968 for the two sets of items.) These difficulties 
for each item are given in Table 1 above. 

S speed and persistence parameters 

The Furneaux theory assigns to each S a speed constant and a critical difficulty, this being the 
difficulty at which the S might first abandom an item. The Furneaux iteration requires these 
constants to be assigned to at least some of the Ss in order to produce item difficulties. At the end 
of a perfect analysis then one would expect to have a speed and difficulty constant for each S. 
However, in practise such an ideal is very unlikely to be achieved. Ss might not produce any 
abandonments throughout the task (and hence cannot be assigned a critical difficulty), or 
alternatively might have so low a critical difficulty that they never produce the unambiguous (i.e. 
responses so quick that there is no possibility of the S abandoning such an item) correct responses 
needed to assign them a speed. As well as these ‘legitimate’ failures of the iterative method, the 
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requirements for obtaining an accurate set of item difficulties (i.e. that all correct responses used 
in estimating item difficulties must be unambiguous) lead to an over rigorous exclusion of Ss and 
hence to their not being assigned one or both of the parameters. 

In all only 59 of the 109 Ss were assigned a full set of parameters (i.e. both speed and critical 
difficulty on day 1, day 2 and when all data is analysed as one). The data for these 59 Ss however 
allow the calculation of day to day reliabilities for these two parameters (i.e. the Pearson correlation 
of the parameter value on day 1 with the day 2 value). The reliability of the speed parameter is 
0.542 and for the critical difficulty 0.746. These values are quite low in the context of the usual 
psychometric measures though it should be pointed out that they are based on an average of < 13 
correct answers on each day. 

Comparisons between these Furneaux parameters and other variables will be made using the 
speeds and critical difficulties obtained when the whole data set is analysed as one. These 
parameters being based on the largest number of observations are assumed to be the best estimators 
of the underlying individual traits. The correlation between S speed and critical difficulty 
parameters and WAIS-R subtest scores are given in Table 2. 

The Furneaux model predicts that the two parameters of speed and continuance will be largely 
independent; the correlation between the speed parameter and critical difficulty is 0.498. 

S parameters deritled directly from item d@culties 

The difficulties of using S parameters derived from the Furneaux iteration necessitates assigning 
values that can be calculated using the item difficulties as fixed parameters and the original log 
(solution times) for each S. For each S we can then calculate a Furneaux speed where 

Speed = mean of (log(solution time) - item difficulty) (8) 

Such a speed can be calculated using Ss’ response times on day 1, day 2 and both together (though 
note that the item difficulties used are always those derived by the Furneaux iteration using all the 
data). This allows the finding of a reliability for Ss’ Furneaux speed parameters. 

To compare the performance of the Furneaux parameter with other estimates of speed 
performance two further sets of parameters are computed for each S. First is a simple average of 
all the log (solution time)s, second is an average of only the log (solution time)s on the items that 
the tailored procedure forced all Ss to attempt (8 items if the statistic is calculated from 1 day’s 
performance, 16 if 2 days’). Again both these statistics are computed for just day 1, just day 2 and 
combining all the data. 

These three statistics can be computed for all Ss who answered any question correctly. In fact 
on day 2 S number 7 failed to get any questions correct and so was removed from this part of 
the analysis. Also in order to have the same group in all subsequent analysis. Ss who failed to 
abandon any item and hence would not be able to have any continuance parameters assigned to 
them were also dropped from the analysis, these being the ‘legitimate’ failures, i.e. people whose 
true speeds and continuances lay outside the measuring range of this set of items. This left a sample 
of 103 ss. 

Table 2. Correlations between WAIS-R subtest scores and speed and critical difficulty from the 
Furneaux iteration 

Speed Critical difficulty 
(derived from all data) (derived from all data) 

-0.079 0.206 
-0.2218 0.194 
-0.177 0.307.’ 
-0.244. -0.031 
-0.168 0.381** 

0.045 0.350.. 

WAIS-R scale 

Information 
Digit span 
Vocabulary 
Arithmetic 
Comprehension 
Similarities 

IQ Verbal 
Picture combletion 
Picture arrangement 
Block design 
Object assembly 
Digit symbol 
Performance IQ -0.334’. 0. I37 
Full scale IQ -0.309” 0.264* 

Significant correlations marked with an * (P < 0.05 l-tailed) or ‘* (P < 0.01 I-tailed). N = 59. 

-0.234. 0.307.’ 
-0.408** -0.085 
-0.092 0.168 
-0.204 0.337.’ 
-0.228’ 0.101 
-0.173 0.217 
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Table 3. Correlations between WAIS-R subtest scores and three alternative speed parameters 

WAIS-R scale Furneaux stxed Mean loafsol’n time) 

Mean log(sol’n time) 

common items 

Digit span 

Vocabulary 

Arithmetic 

Comprehension 

Similarities 

IQ Verbal 

Picture completion 

Picture arrangement 

Block design 

Object assembly 

Digit symbol 

Pe;for&ance IQ -0.306’. 0.044 -0.274.. 

Full scale IQ -0.310** 0.068 -0.257’ 

Significant correlations marked with an l (P < 0.05 2-tailed) or l * (P < 0.01 2-tailed). X = 103. 

-0.162 0.08 I -0.126 

-0.201. 0.032 -0.136 

-0.244’ 0.012 -0.209. 

-0.277.’ 0.04 I -0.192 

-0.194 O.IOiJ -0.128 

-0.1 I2 0.172 -0.071 

-0.274.’ 0.069 -0.212’ 

-0.369** .O.III -0.337.. 

-0.063 0.190 0.006 

-0.155 0.190 -0.152 

-0.181 0.078 -0.177 

-0.267** 0.022 -0.215. 

The day to day reliabilities of the 3 speed parameters are 

Furneaux speed 0.702 
Average of all correct log(sol’n time) 0.718 
Average of common log(sol’n time) 0.691 

as follows: 

Correlations between these 3 alternate speed parameters (when calculated using data from both 
days) and WAIS-R subtest scores are given in Table 3. Similarly an alternative set of continuance 
parameters can be computed using the S speeds derived above. For each S a value of Furneaux 
continuance can be computed where 

Continuance = mean (log(time to abandon) - Ss speed) (9) 

(For the calculation it is the Furneaux speed which is taken as the Ss’ speed.) To give a parameter 
to compare against the performance of this continuance parameter, a simple mean log (time to 
abandon) is also calculated for each S. 

In addition to these parameters derived from the times to abandonment for Ss, parameters based 
solely upon the difficulties of abandoned items can be computed. These are similar to the critical 
difficulty for Ss though without its associated computational problems. Such parameters must 
always be based upon the difficulties of items of the lowest difficulty that any one S abandons as 
the tailored testing procedure ensures that items of a higher difficulty are not given to the S. Two 
such parameters are calculated for each S: 

(1) Mean of difficulties of the abandoned item of lowest difficulty from each cycle of items, (i.e. 
a mean of up to 4 difficulties, one from each cycle, when the parameter is computed for 1 day’s 
data or 8 difficulties when computed for both days’ data). 

(2) The difficulty of the simplest item abandoned. 

All these continuance parameters can be calculated using only the data from 1 day, so allowing 
an estimate of the day to day reliability of the two measures. 

Reliability of Furneaux Continuance 0.900 
Reliability of mean log(abandon time) 0.848 
Reliability of mean lowest abandoned item 

difficulty from each cycle 0.693 
Reliability of lowest abandoned item difficulty 0.608 

The correlation of each of the measures of persistence (when calculated using the data from both 
days) and WAIS-R subtest scores are given in Table 4. How closely each of these derived 
parameters approximates to the true Furneaux parameters (i.e. those produced directly by the 
iterative procedure which produces the item difficulties) can be seen from each parameters’ 
correlation with its ‘parent’ parameter computed for those 59 Ss who gave a full set of values from 
the iteration. These correlations are given in Table 5. 
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Table 4. Correlations between WAIS-R subtest scores and four alternative measures of persistence 

WAIS-R scale 

Infommtion 

Digit span 

Vocabulary 

Arithmetic 

Comprehension 

Similarities 

Verbal IQ 

Picture completion 

Picture arrangement 

Block design 

Object assembly 

Dinit svmbol 

PeFforiance IQ 

Full scale IQ 

Continuance 

Mean 

(log(abandoned time)) 

0.145 0.315** 

0.086 0.241’ 

0.151 0.361” 

0.1 I3 0.290.’ 

0.205. 0.398.. 

0.220’ 0.387” 

0.186 0.426” 

- 0.024 0.193 

0.222. 0.336** 

0.327.. 0.521** 

0. I89 0.338.. 

0.112 0.326.. 

Mean 

(lowest abandoned 

item difficulty 

from 8 cycles) 

0.382.. 

0.282.. 

0.430.’ 

0.395’. 

o.s13** 

0.516.. 

0.53s** 

0.413.. 

0.458** 

0.668** 

0.530.. 

0.519** 

Lowest abandoned 

item difficulty 

0.305.’ 

0.203. 

0.344” 

0.351** 

0.446** 

0.375** 

0.454** 

0.393’. 

O.JOS** 

0.556’. 

0.513** 

0 47n** 

0. I76 0.421*’ 0.655.. 0.607” 

0.198. 0.462** 0.632.’ 0.565.’ 

Significant correlations marked with an l (P < 0.05 2-tailed) or ** (P -z 0.01 2-tailed). IV = 103 

Estimation of S accuracy parameters 

The third S parameter of the Furneaux model is accuracy. The formulation of the accuracy 
parameter in Furneaux’s (1961) study is unclear. White (1982) concludes that it is simply the 
proportion of right to wrong answers. Certainly the accuracy estimates for Ss never enter into the 
calculation of any of the other parameters either for Ss or items. This is in line with the Furneaux 
conception of S accuracy being associated with the ‘comparator’ rather than the ‘problem solving’ 
process of the model. Three separate parameters representing accuracy were calculated. Each one 
was calculated over day 1, day 2 and when both sets of data were added together and treated as 
one. The three parameters were: 

(i) number right/(number right + number wrong) 
(ii) number right/(number right + number wrong + number abandoned) 

(iii) number right. 

Of these three parameters, the closest to the conception of Furneaux’s accuracy is the simple 
proportion of number right to number wrong. Computing each variable over two separate days 
allows for a measure of a day to day reliability for each of these three parameters. These are: 

proportion right: wrong 0.678 
proportion right: wrong or abandoned 0.588 
number right 0.868 

The values of each of these three parameters calculated over both days were then correlated with 
the individual WAIS-R sub-test scores. These correlations are given in Table 6. 

Table 5. Correlations between ‘true’ Fumeaux parameters and parameters 

derived from item difficulties and raw data 

Correlation with 

speed from Furneaux 

iteration 

Mean (log(sol’n time) -difficulty) 0.998 

Mean (log:(sol’n time)) 0.895 

Mean (loa(sol’n time)) over c0mm0n items 0.947 

Correlation with critical 

difficulty from Furneaux 

iteration 

Mean (log(abandon time) - speed) 0.898 

Mean (log(abandon time)) 0.947 

Mean lowest 8 abandoned item difficulties 0.564 

Lowest abandoned item difficulty 0.367 
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Table 6. Correlations between WAIS-R subtat scores and three alternative accuracy 
parameters 

Prooortion 

WAIS-R scale 
Proportion right : wrong 

right : wrong or abandoned Number right 

information 
Digit span 
Vocabulary 
Arithmetic 
Comarehension 

IQ Verbal 
Picture completion 
Picture arrangement 
Block design 
Obiect assemblv 
Digit symbol . 
Performance IQ 
Full scale IQ 

-0.392.. 
-0.X6’* 
-0.44a** 
-0.493.’ 
-0.443.. 
-0.448** 
-0.518’* 
-0.290** 
-0.447” 
-0.498’. 
-0.414” 
-0.439.’ 
-0.503.. 
-0.554” 

-0.310** 
-0.210’ 
-0.373** 
-0.429.. 
-0.359** 
-0.359.. 
-0.422” 
-0.202’ 
-0.358” 
-0.351** 
-0.314** 
-0.326” 
-0.380** 
-0.440** 

0.448** 
0.364** 
0.501** 
0.514** 
0.576.. 
0.565” 
0.632** 
0.432” 
0.552** 
0.679.. 
0.528** 
0.569.’ 
0.674.’ 
0.707” 

Significant correlations marked with an * (P < 0.05 l-tailed) or l * (P < 0.01 l-tailed) 
N = 103. 

The selection of S parameters 

The Furneaux model proposes that Ss should be assigned three largely independent parameters 
representing speed, persistence and accuracy. Furneaux (1961) gives a method of explicitly 
calculating speed and persistence for each S as a by-product of calculating difficulties for items. 
The requirements for obtaining good estimates of item difficulties, however, act to ensure that only 
a sub-set of Ss can be assigned both speed and persistence values. Alternative speed and persistence 
parameters have then to be computed if all Ss are to be given a full set of attributes. These 
alternative parameters can be judged against three sets of criteria. Firstly there are internal 
considerations, largely day to day reliability, but also how many Ss cannot be assigned a value. 
Secondly, there is the correlation between the derived measure and its ‘parent’ Furneaux parameter. 
Finally, there is the pattern of correlations between the parameter and the sub-tests of the WAIS-R 
and the contribution the variable makes in multiple regressions to predict WAIS-R scores. 

On these criteria amongst the speed parameters the mean (log(sol’n time) - difficulty) appears 
as the most suitable. It has a reliability slightly less than the simple mean (log(sol’n time)) (0.702 
compared to 0.718) but it is more closely correlated with the speed derived from the Furneaux 
iteration (0.998 compared to 0.895) and shows the expected negative correlations with WAIS-R 
scores. 

The near zero correlation between the simple mean (log(sol’n time)) and WAIS-R scores is as 
might be expected, given that there are two underlying processes operating. High IQ Ss are solving 
easy items quickly and hence decreasing their mean (log(sol’n time)), but are succeeding at the 
harder items which take more time and are hence increasing their mean (log(sol’n time)). The two 
together ensure no correlation between a simple mean (log(sol’n time)) and IQ measures. 

Amongst the derived persistence parameters the mean (log(abandon time)) is preferable to the 
mean (log(abandon time) - Ss speed) as although it is less reliabIe (0.848 compared to 0.900) it 
is more cIosely correlated with the Fumeaux iteration derived parameter (0.947 compared to 0.898) 
and is more strongly correlated with WAIS-R scores. The two persistence parameters based on item 
difficulties only (rather than log times to abandonment) are discounted because of their low 
reliability. (Although the mean of the lowest difficulty from each cycle shows high correlations with 
WAIS-R scores, its high correlation with accuracy parameters means it performs less well in 
multiple regressions to predict WAIS-R scores than the more independent mean log (abandon time) 
which is chosen in preference to it as the representative persistence parameter.) 

The Furneaux iteration does not provide accuracy scores. However, the sense of the Fumeaux 
model entails not taking ‘number right’ as an accuracy score as ‘number right’ will be a function 
of speed, persistence and accuracy. The proportion of number correct to (number correct + number 
wrong) is both more reliable and more closely correlated with WAIS-R scores than the proportion 
of number right to (number right + number wrong + number abandoned) and is more clearly 
appropriate to the model. 
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Multiple correlations to WAIS-R scores using speed, persistence and accuracy as predictor variables 

The Furneaux model assigns to each individual a set of three ‘atomic’ scores: speed, accuracy 
and persistence. Any cognitive task can be said to depend upon each of these three attributes to 
a different degree, and also upon a variety of non-intellective factors. If the three Furneaux scores 
of speed, accuracy and persistence truly are the atomic properties of the problem solver, then they 
should when combined, using suitable weights, be capable of predicting performance on any 
cognitive task to an equal level dependent only upon the extent to which performance on the task 
is unaffected by task specific factors i.e. a task’s g loading. 

Multiple regressions using the sub-scores from the WAIS-R as dependant variables and the 
speed, accuracy and persistence parameters as predictors will show both the extent to which 
performance on a given WAIS-R task depends on each of the supposed ‘atomic’ properties and 
how well performance on the task is predicted by the atomic properties. This will give two 
alternative measures of the adequacy of the model, one qualitative (the apparent validity of the 
relative weight of each atomic property on the task’s performance), and one quantitative (the size 
of the correlation between a task’s ‘g-loading’ and the R’ from the multiple regression). In order 
to be able to legitimately compare the /?-coefficients both between speed, accuracy and persistence 
and the WAIS-R subtests, the data for all these variables are put into the same measurement scale, 
i.e. normalized to give a mean of zero and SD of 1.0. 

The results of these multiple regressions are given in Table 7. The multiple-Rs given in Table 7 
are not shrunken for bias. With 103 Ss and only 3 predictor variables capitalization on chance will 
not inflate the multiple R value. Corrections if applied would only affect the third decimal place.) 
The g-loading of each of 11 WAIS-R subtests was calculated by performing a principal components 
analysis on the matrix of correlations given in the WAIS-R Manual. The correlation between the 
amount of variance predicted by the three Furneaux measures (i.e. the R’ in Table 7) and the 
g-loading was 0.05. 

The loadings of speed, accuracy and persistence on the WAIS-R subtests are largely as would 
be predicted from a knowledge of the test contents. Digit symbol and picture completion are 
strongly dependent on speed whilst picture arrangement is far less so; comprehension, vocabulary 
and block design depend heavily on persistence; arithmetic is heavily dependent on accuracy, whilst 
digit span and picture completion are much less so. 

Comparison of the multiple R obtained with the WAIS-R scores and the three separate measures 
derived from the letter series problems and the simple correlation between the simple score and 
WAIS-R scores (Table 6) show that the separate analysis of performance into three (largely 
independent) parameters allows for a generally better prediction of the various different subtests 
of the WAIS-R than is possible from the single heterogenous ‘number right’ score. 

Correlation between speed, accuracy and persistence scores and Ravens matrices scores 

The correlations are -0.328 for speed, 0.409 for persistence, and -0.470 for accuracy. 

Table 7. Results of multiple regressions using three parameters representative of speed, persistence and 

accuracy (which have been normalized) to estimate each of the WAIS-R subtest scores and verbal, 

Performance and Full scale IQ (also normalized) 

WAIS-R scale Furneaux weed 

Average abandon 

time 

Proportion 

riaht:wrons 

Information 0.509 -0.310 0.341 -0.260 
Digit span 0.430 -0.343 0.330 -0.139 
Vocabulary 0.622 - 0.430 0.428 -0.283 
Arithmetic 0.593 -0.354 0.285 -0.384 
Comprehension 0.612 -0.391 0.456 -0.265 
Similarities 0.560 -0.280 0.385 -0.297 
Picture completion 0.552 -0.519 0.348 -0.159 
Picture arrangement 0.506 -0.186 0.278 -0.338 
Block design 0.708 -0.406 0.583 -0.270 
Object assembly 0.548 -0.344 0.374 - 0.269 
Digit symbol 0.61 I -0.439 0.396 -0.287 
Verbal IQ 0.719 -0.492 0.503 -0.324 
Performance IQ 0.731 -0.532 0.524 -0.301 
Full scale IQ 0.785 -0.551 0.557 -0.339 

N = 103. 
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Table 8. Correlations between average reaction time parameters from day I and day 2 on the choice 

reaction time tasks and three variables from the Furneaux letter series task representing speed, 

persistence and accuracy 

Speed based on Furneaux Average abandonment Proportion of 

item difficulties time right:wrong 

Variable (Speed) (Persistence) (Accuracy) 

DTI 0.086 -0.265.’ 0.222’ 

DT2 0.085 -0.195. 0.183 

SLOPE 0.069 -0.143 0.130 

DVI 0. I56 -0.288** 0.280** 

DV2 0. I30 -0.162 0.035 

MTI 0.022 -0.304** 0.271** 

MT2 -0.046 -0.316** 0.261’* 

MVI 0.138 -0.228’ 0.149 

MV2 0.039 -0.300** 0.139 

ORT.FS 0. I77 -0.246. 0.237* 

OMT.FS -0.091 -0.290” 0.184 

ORRNG.FS 0.232. -0.241. 0.320”’ 

OMRNG.FS 0.088 -0.153 0.186 

FULL SCALE IQ -0.310** 0.462’. -0.555” 

Significant correlations marked with l (P -c 0.05 2-tailed) or l * (P < 0.01 2-tailed). N = 103. 

Correlation between speed, accuracy and persistence scores and decision time parameters 

The correlations between the three representative speed, accuracy and persistence parameters and 
parameters derived from the CRT and OMO tasks are given in Table 8. The most notable feature 
of these results is the absence of significant correlation between speed and any of the decision time 
measures. The pattern of correlations is indicative of the correlation betweeen Furneaux parameters 
and decision time parameters being mediated by their common relationship to IQ rather than any 
causal link between fast/consistent decision and movement times and fast solving of problems. 
Certainly there is no support for the suggestion that the correlation between DT and IQ is a 
function only of the common ‘speeded’ elements in DT tasks and IQ tests. The failure of DT 
parameters to correlate with speed is related to the ‘test-speed paradox’ discussed by Jensen (1982). 
Jensen suggests that items of a complexity much greater than simple reaction time tasks invoke 
other processes than the simple ‘limited capacity information processing channel’ such as short term 
memory, encoding stimuli etc. The involvement of such processes would mitigate against a large 
correlation between DT measures and Furneaux style speed measures. 

Correlation between speed, accuracy and persistence scores and personality parameters 

Furneaux (1961) postulates that a relationship should exist between the ‘atomic’ properties of 
the individual problem solver (i.e. the S’s Furneaux-Serived speed, accuracy and continuance 
scores) and the individual’s personality. Particularly he suggests that continuance and speed will 
be a function of ‘drive’ and describes some experiments, where the manipulation of arousal affects 
Ss’ speed and accuracy differentially depending on their scores on the Guilford S.T.D.C.R. 
inventory. 

Correlations between the three representative speed, accuracy, and persistence parameters and 
the seven personality parameters from the EPQ and IVE are given in Table 9. From the EPQ only 

Table 9. Correlations between three ‘Furneaux’ parameters representing speed. persistence and 

accuracv and oersonalitv scores from the EPO and WE 

Variable 

Psychoticism 

Extraversion 

Neuroticism 
Social desirability 

lmpulsivity 

Venturesomeness 

Empathy 

Speed based on Fumeaux Average abandonment 

item difficulties time 

(Speed) (Persistence) 

0.035 -0.009 

0.024 0.060 

-0.022 -0.002 

-0.144 -0.346’. 

-0.148 0.013 

0.213’ 0.346.. 

-0.102 0.164 

Proportion 

right:wrong 

(Accuracy) 

-0.184 

0.082 

-0.075 

0.203’ 

0.097 

-0.076 

-0.138 

Significant values marked with an l (P -c 0.05 2-tailed) or l * (P < 0.01 2-tailed). 



‘56 w. FEARS03 et ul. 

social desirability is significantly correlated to any of the ‘Furneaux’ parameters. This is probably 
attributable to the marked correlation between social desirability and WAIS-R IQ (-0.335 in this 
sample). This result is surprising in the light of Farley (1966) reporting correlations between both 
E and N and speed as measured using the Nufferno tests. However, the Nufferno tests were not 
subjected to the type of analysis that Furneaux (1961) suggested for tests to truly measure the 
atomic property of speed. The relationship between Nufferno speed and speed as calculated by the 
Furneaux methods used here is unclear. 

From the IVE, venturesomeness is significantly correlated with both speed and persistence. This 
result mirrors results comparing decision time performance with personality where again it is 
venturesomeness which shows the greatest relationship with performance measures (Frearson et al., 

1988). 

DISCUSSION 

The Furneaux model approaches individual differences in problem solving in a new way. Both 
the properties of items and Ss are re-interpreted. Items are considered in terms of their difficulty, 
based not on the probabilistic properties of pass/fail (as in classic psychometrics and item response 
theory) but rather in terms of difficulty based on time to solve. The relationship between this ‘time 
based’ difficulty and the difficulties of classical psychometrics and item response theory remains 
unexplored, but the meaningfulness of time-based difficulties (i.e. that relative item difficulty is 
dependent solely upon the item’s content not upon properties of the sample’s individuals) has been 
demonstrated. 

The classification of Ss by their speed, accuracy and continuance has also been shown to be 
reliable and apparently valid. However, the strict adherence to the Furneaux method for the 
computation of S speed and continuance parameters which leads to the failure to assign a full set 
of parameters to many Ss (and hence has led to the premature halting of attempts at replication) 
has been shown to be unnecessary. Parameters for continuance can be computed directly from the 
times taken to abandon items and such parameters out-perform parameters calculated with a closer 
adherence to the letter of the Furneaux method. Similarly, S accuracy parameters can be computed 
with no regard to the Furneaux model (indeed it is hard to see how the Furneaux method does 
calculate accuracy parameters) and appear to perform well. 

It is in the calculation of speed parameters that the Furneaux model shows distinct advantages 
over more crude measures. To investigate individual differences in speed it is clearly imperative to 
account for differences in item characteristics. A simple summation of the time to complete a set 
of items can never show the relationship between speed and general ability as it confounds two 
opposite tendencies: the tendency for bright Ss to rapidly complete items and to succeed at difficult 
and time-consuming problems. Attempts to measure speed have therefore concentrated on giving 
Ss items only of such low difficulty that all Ss will succeed on them, measuring only the first of 
the tendencies. The resulting speed measures applying as they do only to items of a trivial difficulty 
are of limited validity (and the difficulties in measuring solution times are magnified by virtue of 
their shortness). The Furneaux method addresses the problem of measuring speed by determining 
for items a time-based difficulty measure. The use of these difficulties means that Ss’ speeds can 
be calculated from any set of items of a full range of difficulty. It is this facility that allows the 
Furneaux method to produce speed measures for subjects that are reliable and apparently valid. 

The nature of this speed characteristic of individuals is indicated by the results from comparing 
Furneaux speed and the WAIS-R scores and decision time data. Significant correlations between 
Furneaux speed and the unspeeded subtests of the WAIS-R, particularly vocabulary, show 
that Furneaux speed is not simply a facility for ‘working against the clock’ but is rather a trait 
for rapid manipulation of data. The low correlation between speed and decision time parameters 
shows Furneaux speed not to be a simple measure of ability for rapid response but rather an aspect 
of more cognitive traits. 

Theoretically the poor correlation between the Furneaux speed measure and decision time 
parameters is counter indicative of a simple hierarchical model where fast decision times lead to 
fast cognitive speed and hence a high IQ, but rather points to a model of a high IQ ‘dispositional 
set’ where responsivity to outside stimuli interacts with internal properties of the nervous system 
leading to the parallel development of fast decision times, cognitive speed and IQ. 
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The practical applications of the Furneaux method are important. It has long been felt that the 
time taken for a S to produce a response was as informative as whether it was right or wrong. 
However, the difficulty in accurately timing each response has made use of such data prohibitive. 
With the introduction of automatic ability testing by micro computer, the collection of response 
times becomes trivial. The Furneaux method allows use to be made of these extra data. The results 
of the multiple regressions using Furneaux speed along with accuracy and persistence parameters 
to predict WAIS-R subtest scores as well as verbal, performance and full scale IQ shows that the 
use of response times allows a short test to perform more like a battery of tests than a single one. 
(Typically any one test will correlate highly with some tests with which it shares common item 
specific factors and very badly with others. The generally high multiple R obtained with the three 
parameters of the Furneaux test for all the WAIS-R subtests show its greater independence from 
the effects of item specific factors.) 

The supporting evidence for the details of the Furneaux model is weak, indeed it is hard to see 
what form such evidence could take. However, the function of models of such wide scope is more 
to be of use in stimulating research than to be literally correct. The Furneaux model highlights an 
alternative approach to individual difference research distinct from both psychometrics and item 
response theory. Such an approach appears to give results of acceptable reliability and validity and 
with changes in techniques of practical testing the over-heads involved in collecting the extra data 
required become less of an obstacle. 
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