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Preface

Ten or fifteen years ago, a major problem that the writer of a review paper
on reaction times andtheir relationship to intelligence would have encoun-
tered would have been the dearth of recent material pertaining to the topic.
Indeed,given the lack of interest that most differential psychologists paid re-
action timesatthis time,it is unlikely that it would have occurred to anyone
to undertake such a project. Had they doneso, with few exceptions,all of the

references would have been pre-1930, and the majority of the discussion

would have centered ontherole of reaction times in the theories of such turn

of the century luminaries as Sir Francis Galton and Charles Spearman.

Muchhas happenedin the past decade, however, and it is now doubtful

that a single review paper could do justice to the abundanceof research and

theorizing that exists on the contributions of reaction times, mental speed,

and speed of information-processing to individual differencesin intelligence

and mentalabilities. Much of this research is reviewed and discussed in the

present volume, by contributors whoeither are actively involved in research

on reaction times and intelligence or whose perspective on these topics pro-

vides a valuable commentary on the role of speed-of-processing in theories of

intelligence.

In the first four chapters, attention is paid to recent reaction time research,

including studies of the heritability of measures of speed of information-

processing, neurophysiological correlates of reaction times, the role of atten-

tion in reaction time performance, and a comprehensive meta-analysis ofre-

action times in the Hick paradigm. Chapters five through eight provide

critical commentaries on reaction time research and offer a numberofinter-

esting interpretations regarding the place of mental speedin intelligence theo-

ries. Chapter nine is devoted to research on inspection times and providesthe

most thorough treatmentof this topic that has appeared to date.Finally, in

chapter ten, the “last word” is reserved for “The Next Word on Verbal Abil-

ity”: an exhaustive accountof this topic by one of the leading contributors to
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the field. Regrettably, a chapter devoted to reaction times and mentalretar-

dation was notdelivered in time to be included. This, however, is perhaps the

only topic that has not received the attention it deserves.

Thanks are due, first and foremost, to the contributors to this volume,

who devoted much time andeffort to their respective topics. Thanksfor her

assistance and patience is well-earned by Barbara Bernstein of Ablex. Special

thanks to mysecretary, Carol Meyer, without whoseskills and assistancethis

project would have been hard-pressed to meetits deadlines. And, finally,

thanks to my father—Philip E. Vernon—for his many contributions and

continued encouragement.



CHAPTER1

New Developmentsin
Reaction Time Research

Philip A. Vernon
Departmentof Psychology
University of Western Ontario
London, Ontario, Canada, N6A 5C2

Research on the relationship between reaction time (RT) and mental ability
has had a checkeredhistory. Atfirst, it appeared to some that RTs and other
simple perceptual and sensory discrimination measuresheld great promise as
a meansto revealing and elucidating the mysteries of humanintelligence. As
early as 1904, for example, Charles Spearman claimedthat “general sensory
discrimination” and “general intelligence” were essentially perfectly corre-
lated. The optimism that this may have generated would be short-lived, how-
ever, as other workersfailed to replicate Spearman’sresults or to support his
conclusions (e.g., Thorndike, Lay, & Dean, 1909). Indeed, even before
Spearman, Wissler’s (1901) report of a correlation of only — .02 between RTs
and estimates of ability anticipated the paradigm’s impending desuetude.

Thereafter, for some 50 or 60 years, the use of RTsin the studyofintelli-
gence wasan isolated practice (e.g., Lemmon, 1927; Peak & Boring, 1926),
regarded by most to beoflittle interest or consequence. Introductory Psy-
chology students by the thousands must have heard that Galton and Spear-
man were wrong— RTs and mentalabilities had been provento be unrelated.
Given the prevalence of this belief, the recent attention that RTs have en-
joyed, and the concomitant recognition that they area potentially important
correlate of intelligence, may be regarded as one of the great comebacksin
psychology (only somewhatless modest, perhaps, than the rediscovery of the
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brain following the reign of Behaviorism!). Several aspects of this comeback

are addressed in the present volume.

Following a brief introduction, this chapter will focus on three somewhat

disparate issues: the relationship between RTsandintelligence test scores ob-

tained under timed or untimed conditions; the heritability of RTs; and sex

differences in RTs. Each of these has received someattention in thelitera-

ture, although, with the exceptionofthe first, their discussion here will center

around previously unreported studies and results. Clearly, these topicswill

not provide an exhaustive accountof all of the new developments andrecent

research on RTsandintelligence. To attempt such an account would, among

other things, involve unnecessary duplication of material presented in some

of the other chapters. The topics are, however, indicative of the sorts ofis-

sues that researchers in the area have found fruitful to explore and, hope-

fully, they will at least implicitly raise questions towards which furtherre-

search maybedirected.

THE “NEURAL-EFFICIENCY” MODEL

Reviews of research on RTs and intelligence, such as Jensen (1982) and

Vernon (1985), have concluded that the two are moderately highly cor-

related — zero-order correlations range from about — .30 to — .50, though

multiple Rs in the .70s have been reported — and have attempted to account

for the relationship in terms of what mightbe called a model of “neuraleffi-

ciency.” The essence of this modelis that the human short-term or working

memoryhas a limited capacity to store and to process information, and that

the information that it can hold is subject to fairly rapid decay or loss in the

absence of continuous rehearsal. During problem-solving, or performance

of any intellectual task sufficiently complex to result in individual differ-

ences, as information is taken into the system andthe task’s requisite compo-

nent processes are carried out, there is some probability that the capacity of

the system will reach its threshold. Presumably,were this to happen,the indi-

vidual would be unable to solve the problem or, at least, would need to back-

track or to start again. The probability of this occurrence would be lowered,

however,if the system had some wayto overcomeits limitations. Rapid exe-

cution of the requisite cognitive processes is proposed as one such way of

“beating the system.”

Information entering working memory would quickly fill up its limited

storage capacity unless it could (at least) equally quickly be recoded and

stored as a small number of chunks. Information retrieval from long-term

memory (LTM), necessary for the task’s solution, could, unless performed

quickly, be accompanied by the decay or inaccessibility of the earlier-stored

information. Theretrieved information mustitself be held in working mem-
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ory, contributing to the bulk of the material being stored, while at the same
time rehearsal processes and the component processes involvedin the task’s
solution must be carried out. Speed may not be the only factor operating to
reduce the probability that the system will be overloaded but a substantial
amount of research— described in detail in the previously cited reviews by
Jensen (1982) and Vernon (1985) —has demonstrated thatit is an important
factor.

SPEED OF INFORMATION-PROCESSING AND
TIMED VS. UNTIMED MEASURESOF INTELLIGENCE

To what extent might the relationship between RT measures of speed of
information-processing andintelligence be attributable to thefact that many
tests of intelligence are themselves speeded or contain timed subtests? Some
authors (e.g., Carroll, 1981; Schwartz, Griffin, & Brown, 1983; Sternberg,
1984) have suggested that the answerto this question is “quite a lot,” while
others (Vernon & Kantor, 1986; Vernon, Nador,& Kantor, 1985) have taken
the contradictory and seemingly counterintuitive position that RTs might ac-
tually correlate more highly with untimed than with timed IQ scores. Fast
information-processing is useful during a timed test because, in order to an-
swer a large numberofitemsin a short period oftime, an individual must be
able to “work” —that is, to perform the cognitive operations demanded by
the items— quickly and efficiently. During an untimedtest, the individual
may nolonger appearto have to work quickly but, accordingto the neuralef-
ficiency model described previously, speed of information-processingisstill
important. The reasonis that itemsonintelligencetests are typically arranged
in order of increasing difficulty, and that later items, which untimedindivid-
uals are more likely than timed individuals to reach and attempt, will, be-
cause they are more difficult, place increasing information-processing
demandsonthe individual, an increasing burden onthe individual’s informa-
tion-processing system, and thusresult in an increasing need for fast speed of
information-processing to ameliorate the situation.

Results supporting this position were reported by Vernonetal. (1985) and
by Vernon and Kantor (1986). In the first of these studies, 81 subjects were
given a multiple-choice, paper-and-pencil intelligence test (the Multidimen-
sional Aptitude Battery [MAB]; Jackson, 1983) under both timed and un-
timed conditions. On each of the 10 subtests of the MAB, subjects were in-
structed to work as quickly as they could for 5 minutes, recording their
answers with a blue pen. At the end of each 5-minute period, subjects
switched to a red pen and continued working for as long as it took them to
finish the subtest. Subsequently, each subject’s timed score was computed as
the numberof correct answers markedin blue, while the total numberofcor-
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rect answers markedin blue or red becametheir untimedscore. Multiple re-

gression analyses, in which these timed and untimed scores were regressed on

RTs, yielded multiple Rs of .605 and .504, respectively. These correlations

are not significantly different from each other, and it was concluded that

speed of information-processing is an approximately equally good predictor

of untimedas of timedintelligence test performance.

This study has been criticized by Sternberg (1986), who points out that

zero-order correlations between the MAB and RTswereconsistently higher

with the timed than with the untimedscores. In fact, of 21 RT measures, 20

correlated more highly with timed than with untimed MABscores. Sternberg

omitted to report, however, that the magnitudes of the differences between

the correlations were mostly quite small: averaged across the 21 measures,

the difference was only .06. Of more concern (as Sternberg, 1986, also points

out) is the fact that the so-called “untimed score”is only partly untimed, since

it was computed as the sum of subjects’ timed and untimed scores. Theeffect

that this may have had on thescores’ correlations with RTs wasinvestigated

by Vernon and Kantor(1986).

In this study, 113 high school students were randomly assigned to one of

two groups: one was allowed only 5 minutes to work on each subtest of the

TABLE1

Zero-order correlations between reaction times? and Full-Scale, Verbal,

and Performance MABscoresin each group
 

SD2 DIGIT DT2 Words DT2 Digits CATMATCH SA2 DT3 Words

 

Timed —.265 —.452 — .379 — .437 — .523 — .493 — 484

Full-Scale

Untimed — 336 —.353 — .230 — .161 — ,440 — .508 — 541

Timed —.184 —.351 — .295 — 353 — 391 — .446 — .461

Verbal

Untimed — .378 —.337 — .298 — 174 — .516 — .519 — .541

Timed —.282 —.434 — .362 — .402 — 521 — .395 — .360

Performance

Untimed — 228 —.304 —.114 —.117 — .278 — .401 — .440

 

@Reaction timetests are described in detail in Vernon, Nador, and Kantor (1985). Briefly,

they are: SD2: Same-different words
DIGIT: Sternberg probe-recognition

DT2: Same-different words + DIGIT

CATMATCH:Category matching

SA2: Synonyms and antonyms

DT3: Synonyms and antonyms + DIGIT

TRFAL:True/False sentence verification

DT4: Arithmetic problems + DIGIT
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MAB;theotherwasgiven unlimited time. Subsequently,all subjects were ad-
ministered the same battery of RT tests used by Vernonetal. (1985) under
standard conditions. Regression analyses yielded multiple Rs of .559 and
-662 when timed and untimed MABscores, respectively, were regressed on
RTs. Note that the untimed MAByielded the larger correlation. This wasre-
flected by the finding that zero-order correlations between the MABsubtests
and individual RTtests were, on average,slightly larger in the untimed than
in the timed group. As in Vernonet al. (1985), the differences are mostly
quite small but, unlike the first study, the majority (61 of 110) of the correla-
tions are higher with the untimed MAB.

Interestingly, Verbal and Performancesubtests behaved quite differently
in terms of the conditions under which they were administered andtheir re-
sulting correlations with RTs. At thelevel of individual subtests, 38 of 55 cor-
relations between Verbal subtests and RTs were higher in the untimed than in
the timed group. In contrast, 32 of 55 correlations between Performance
subtests and RTs were higher in the timed group.At the Scale level, as can be
seen in Table 1, untimed Verbal Scale scores correlated more highly than
timed scores with 8 of 11 RT tests, while untimed PerformanceScale scores
correlated more highly than timed scores with only 3 of the 11 RT tests. Per-

 

Correlations with:

First

Factor

DT3 Digits TRFAL DT4Math ODT4 Digits Average Loadings Mean RTs
 

— .410 — .370 — .369 — .376 — .414 157 .166

— .350 — .482 ~ .339 — .353 — .372 .085 332
— .355 — .300 — .206 — 273 — .329 .686 — .001

— .346 ~ .480 — .397 — .327 — .392 ~ .019 907
— .348 — .338 — .454 — 384 — .389 .493 372

— .287 — .393 — .214 — 313 — .281 .192 105
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haps some ofthe later Verbal items—those attempted more frequently by

subjects in the untimed thanin the timed group — aresufficiently complex to

place a high premium onfast speed of information-processing. This might be

true of Arithmetic items, for example, the later, more difficult of which

would be expected to impose considerable information-processing demands

even in the absenceof a time-limit. Performance items, in contrast, may be

relatively less complex and more amenable to solution when unlimited time is

provided. This would be particularly true of Digit Symbol,in which subjects

merely have to match increasingly lengthy strings of digits and associated

symbols, and to a lesser extent, perhaps, of Spatial items. Inspection of the

average zero-order correlations between each subtest and the 11 RTtests in

Table 2 in fact reveals that Digit Symbol and Spatial are the two Performance

subtests whose correlations with RTs are markedly larger in the timed thanin

the untimed group. For Picture Completion, the correlations are approxi-

mately equivalent in the two groups, while both Picture Arrangement and

Object Assembly actually correlate somewhat higher, on average, with RTs

in the untimed group.All of the Verbal subtests correlate more highly, on av-

erage, with RTs in the untimed than in the timed group but the difference is

largest in the case of Arithmetic.

Referring back to Table 1, it is also evident that there is a not inconsidera-

ble range in magnitude among the MABand RTcorrelatidns within each

group. The correlations with untimed Full-Scale scores, for example, range

from —.161 to — .541; with timed Performance Scale scores, from — .282 to

— 521. Furthermore,the variations that exist within the timed and the un-

timed tests appearto be attributable to quite different sources. Factor analy-

sis of the intercorrelations amongthe 11 RT tests yielded a strong generalfac-

tor, accounting for 75.6% of the variance. In the second column from the

right in Table 1, the correlations between the RTtests’ loadings on this gen-

eral factor and their correlations with the MABScale scores are reported. As

can be seen, these are all positive and quite high for the timed scores (.757,

.686, and .493 for Full-Scale, Verbal, and Performance, respectively) but are

negligible, and in one case negative, for the untimed scores. Evidently, the ex-

tent to which a RTtest correlates with timed MABscoresis quite highly re-

lated to the test’s loading on a general speed factor, but this loading is

unrelated to the test’s correlation with untimed scores.

Somewhat more important for untimedscoresis the relative complexity of

the RTtests, as operationally defined by their mean latency. In the far right

column of Table 1, correlations between the meansof the RT tests and their

correlations with the MABarereported. For untimed Full-Scale and Verbal

scores, the correlations of .332 and .507, respectively, are positive and mod-

erate in magnitude, while the corresponding correlations of .166 and — .001

with the timed tests are much smaller. Forthesetests, then, it appears that the

relative complexity of a RT test is related to the degree to whichit correlates



TABLE 2
Meanzero-order correlations between each MABsubtest? and 11 reaction timetests in the timed and untimed groups

INFO COMP ARITH SIMS VOCAB DGSYM PICO SPAT  PICARR’- OBJASS

Timed Group — .294 — .251 — .149 — .356 — .256 ~ .379 — .350 — .234 — .203 — .257
Untimed Group — .364 — .285 — .291 — .390 — .265 — .204 —.315 —.141 — .296 — 304

“MABsubtests,in the orderlisted above,are: Information, Comprehension, Arithmetic, Similarities, Vocabulary, Digit Symbol, Picture
Completion, Spatial, Picture Arrangement, and Object Assembly.
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with untimed but not with timed tests. This pattern does not hold for Per-

formance scores, however, which correlate more highly with the RT tests’

meansin the timed condition.

Taken together, these results indicate that timed and untimedtests of men-

tal ability impose rather different information-processing demandsontest-

takers, but that the speed with which they can execute the different cognitive

processes that each requires is related approximately equally highly to the

probability that they will handle the demands successfully. Timed intelli-

gence test performance appearsto be most highly related to general speed of

information-processing, reflecting the fact that a high timed-test scorer must

be able to perform a wide variety of cognitive processes quickly andeffi-

ciently. A high score on anuntimedtest, however,is not related to this gen-

eral speed factor but, reflecting its own reliance on the ability to answerlater,

more difficult items, is positively correlated with the relative complexity of

the RT tests. The finding that this holds for Verbal but not for Performance

Scale scores supports the earlier contention that later Performance items

may—at least in some subtests — be relatively less complex than somelater

Verbal items.

THE HERITABILITY OF MEASURES

OF SPEED OF INFORMATION-PROCESSING

To what degree do RTtests tap what might be referred to as the “hardware”

of the brain? Thatis, to what extent are individual differences in RTsattribu-

table to differences in biological or neurophysiological properties of the

brain that may be hypothesized to underlie both the speed with which persons

can process information andtheirintelligence? One step (amongseveral) that

may be taken in an approachto this question is to obtain estimates of the

heritabilities of different RT tests —i.e., to estimate the proportion of the to-

tal variance in RTsthatis attributable to genetic variance — and to determine

whetherthese heritabilities are sufficiently large to warrant the inference that

individual differences in performance onthetests are in part determined by

underlying biological processes or mechanisms.

Thefirst, and, to my knowledge, only published study to investigate this

was conducted by McGue, Bouchard, Lykken, and Feuer (1984). In this

study, 34 pairs of monozygotic twins that had been reared apart (MZA) and

13 pairs of dizygotic twins reared apart (DZA) were administered three dif-

ferent RT tests and a battery of psychometric tests. The RT tests were factor

analyzedto yield three factors — overall speed of response, speed of informa-

tion-processing, and speed of spatial processing — and intraclass correlations

between the MZA twins were computed. Briefly, none of the MZAcorrela-

tions involving speed of specific cognitive processing was significant,
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whereasthe correlation for overall speed of response (r = .456) wassignifi-

cant. The authors concluded: “the results reported here support the existence

of a general speed component underlying performanceon most experimental

cognitive tasks whichis strongly related to psychometric measures of ‘G’, and

for which there are substantial genetic effects” (p. 256).

Overa period of approximately 10 months, I have collected RT and MAB

data from 32 pairs of MZ twins and 35 pairs of DZ twinsliving in southwest-

ern Ontario. With the exception of one of the MZ pairs who were separated

at birth until 12 years of age, each of the twin-pairs had been raised together

at least until the age of 15 years. The MZ twins ranged from 15 to 37 years of

age (mean = 24.5, SD = 6.5). Twenty eight pairs were female, four male.
The DZ twins ranged from 15 to 40 years of age (mean = 22.2, SD = 6.9).
Fifteen pairs were female, 5 male, and 15 mixed-sex. The zygosity of the

Same-sex pairs was determined by means of a questionnaire developed by

Nichols and Bilbro (1966). According to these authors, the questionnaireis
93% accurate relative to blood sample analyses, and may thus be considered
a fairly valid tool for its purposes.

Table 3 presents the results of a series of multiple regression analyses, de-
signed to show boththeoverall relationship between RTsandfull scale MAB

TABLE3

Summary of adjusted Rs obtained in regressions
of full-scale MAB scores on RTswithin

MZ and DZ samples
 

 

Sample R,dj Average

Total Sample (n = 134) .635

All MZ subjects (n = 64) .685

All DZ subjects (n = 70) .562

Within MZ subjects?:

Twin 1/Twin 1 .672 700°
Twin 2/Twin 2 .727 "

Twin 1/Twin2 .629 647

Twin 2/Twinl .664 "

Within DZ subjects

Twin 1/Twin 1 61

Twin 2/Twin 2 .723 642

Twin 1/Twin 2 .296

Twin 2/Twin 1 324 310
 

“Regressions performedin which each twin’s MAB score

was regressed on either his/her own (twin 1/twin 1 and

twin 2/twin 2) RTs or on his/her twin’s (twin 1/twin 2 and

twin 2/twin 1) RTs.

>This correlationis the average of .672 and .727, i.e., the

average R obtained when each twin’s MABis regressed on

his/her own RTs.
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scores in these twin samples, and to provide a preliminary indication of the

degree of similarity that exists among MZ and among DZ twin-pairs in RTs

andintelligence. The first correlation (R = .635) is the shrunken multiple R

obtained from theregression of all subjects’ MABscores on their RTs. In

other words, this correlation was obtained by ignoring the fact that the sub-

jects were twins and treating them simply as a sample of 134 subjects. The

magnitudeof this correlation is similar to that obtained in previous studies

that have used the sametests (e.g., Vernon et al., 1985; Vernon & Kantor,

1986). If age is controlled, all the zero-order RT/MABcorrelations are in-

creased and the resulting shrunken multiple R is .678. The next twocorrela-

tions in Table 3 (R = .685 and .562) were obtained in the same manneras the

first, but within the MZ (treated as N = 64 subjects) and DZ (N = 70)

samples. For these samples,at least, the relationship between RTsandintelli-

gence appearsto be stronger among the MZ than among the DZ subjects.

The next set of four correlations was obtained by arbitrarily designating

one memberof each MZ twin-pair as “Twin 1” and the other as “Twin 2.” Re-

gressions were then performed in which each twin’s MABscorewasregressed

on his or her own RTs(resulting in R = .672 and .727 for the 32 Twin 1 and

Twin 2 subjects, respectively), and in which each twin’s MABscore wasre-

gressed on his or her twin’s RTs(resulting in R = .629 and .664). Note that

each of these four analysesyields a correlation that is of approximately the

same magnitude as those obtained from all 64 of the MZ subjects and from

the total sample of 134 subjects. Among the MZ twins, then, approximately

the same degreeof relationship between MABscores and RTsis found even

whenonetwin is substituted for the other.

The final set of four correlations in Table 2 shows what happens whenthe

DZ twin-pairs are treated in the same fashion. When each DZ twin’s MAB

score is regressed on his or her own RTs,correlations of .561 and .723 are ob-

tained. The average of these (R = .642) is still approximately the same as

those obtainedin all the previous analyses. When each DZ twin’s MABscores

is regressed onhis or her twin’s RTs, however,the resulting correlations (R =

.296 and .324) are markedly lower. Unlike MZ twins,it is not possible to sub-

stitute one DZ twin for the other and observe the samedegreeof relationship

between MABscores and RTs.In fact, the correlations are only about half as

large.
The greater similarity among MZ than among DZ twins, both in mental

abilities and in speed of information-processing, is shown clearly in Table 4.

Here, the intraclass correlations obtained from the MZ and the DZ samples

are reported for each of the MABsubtests, the MABScale scores (Verbal,

Performance, and Full-Scale), and for 11 RT measures. With only one excep-

tion, all of the intraclass correlations are larger in the MZ than in the DZ

samples, and a simple estimate of heritability Q2[7,,,, — “),)) reveals that

both the MAB and many of the RT measures have a substantial heritable
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TABLE 4

Intraclass correlations obtained from MZ and DZ twinsfor

MABsubtests, MAB Scale scores,? and RT variables, and

heritability estimates (h?) based on these correlations
 

 

Variables MZ correlations DZ correlations h

INFO .734 588 .292

COMP .750 .568 .364

ARITH .638 495 .286

SIMS 717 .233 .968

VOCAB .843 523 .640

DGSYM .729 — .019 —>
PICO 471 344 254

SPAT .710 .226 .968

PICARR .630 .156 .948

OBJASS .743 345 .796

VERB .905 544 .722

PERF .866 .254 —

FULL-SCALE .923 .470 .906

SD2 .706 .298 .816

DIGIT 578 .408 .340

DT2 Words .550 508 .084

DT2 Digits .690 .256 .868

CATMATCH 513 .156 .714

SA2 .688 .244 .888

DT3 Words .720 | .298 .844

DT3 Digits .461 321 .280

TRFAL .610 518 .184
DT4 Math 379 .095 568

DT4 Digits .326 365 —
 

“MABsubtests are as described in Table 2. The Scale scores are
Verbal, Performance, and Full-Scale.

bh? estimates > 1 or < Oare not reported.

component. In these samples, the heritability of the full-scale MABis .906,
and heritabilities of the RT measures range from .084 to .888, with a mean of
.559,!

Within the MZ and DZ samples, correlations among the 11 RTtests
referred to in Tables 1 and 4 were submitted to principal factor analysis. In
each sample,a single factor with an eigenvalue greater than one was yielded,
accounting for 74.1% and 66.9% of the variance among MZs and DZsre-
spectively. All of the variables had high positive loadings, ranging from .734
to .923 among the MZs and from .677 to .889 among the DZs. The loadings
for MZs and DZs were themselves correlated .872, and thefactors are inter-

 

'This mean is based on the 10 RTtests for which heritabilities could be computed with this
formula.
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preted as representing general speed of information-processing.? Intraclass

correlations between factor scores on these factors were .685 and .429, for

MZ and DZ twinsrespectively, yielding a heritability estimate (applying the

same formula as before) of .512.

Finally, intraclass correlations were computed for three speed-of-process-

ing variables derived from the 11 RT tests. These variables include twoesti-

mates of speed of scanning information in STM;twoestimatesof speedofre-

trieval of information from LTM;and three estimates of storage-processing

trade-off in STM.The wayin which these variables are derived is described in

Vernonet al. (1985; Table 3). The first two (STM scanning and LTM re-

trieval) represent processes that are similar to those tapped by McGueetal.’s

(1984) speed of information-processing factor, and, as in their study, MZ

(and DZ) intraclass correlations for these variables are small and non-

significant. For the two STM scanningvariables, the average MZ correlation

in the present study was .267. The corresponding correlation for the DZs was

.183. For LTMretrieval, the average intraclass correlations were .304 for

MZsand .275 for DZs. In contrast, the storage-processing trade-off mea-

sures — which are hypothesized to measure the extent to which subjects can

store one type of information (usually strings of digits) in STM while simulta-

neously processing other information (e.g., synonyms and antonymsorsim-

ple arithmetic problems) — yielded larger MZ and smaller DZ intraclass cor-

relations (the average across the three estimates was .429 for MZs and .103

for DZs), whichin turn yield a fairly substantial estimate of heritability: .652

using the average correlations.

In sum, the results of the present study support those of McGueetal.

(1984) in showing that some measures of RT and speed of information-

processing have a substantial heritable component, while others appearto be

less influenced by genetic factors. Currently, I am continuing to collect twin

(and other kinship) data and,as larger samples are obtained, morestableesti-

matesof the variables’ heritabilities will be provided. These, in turn, will al-

low otherinteresting questions to be addressed, such as whatfactors arere-

lated to the variability amongthetests’ heritabilities. Will the heritabilities be

related, for example, to the tests’ loadings on the general speed factor? Or to

their correlations with measures of intelligence? For the moment,it will be

sufficient to conclude that individual differences in the speed with whichper-

sons can perform certain cognitive operations are in part attributable to ge-

netic differences, and to infer that RT measures of speed of information-

processing are (albeit indirectly) tapping biological or neurophysiological

properties of the brain.

 

2Despite their names, these factors are not directly comparable to the factor that McGueetal.

(1984) labelled “speed of information-processing.” Their factor was defined by three variables

derived from the S. Sternberg and Posnertasks.
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SEX DIFFERENCESIN
SPEED OF INFORMATION-PROCESSING

Sex differences in mental abilities have been subjected to extensive investi-
gation, but studies in this area have yielded few unambiguousresults. It is
probably safe to say that representative samples of males and females will
differ verylittle, if at all, on Full-Scale measures of general intelligenceor,
more importantly, since many ofthe tests themselves have been designed to
minimize sex differences, on g factor scores derived from heterogeneous
batteries of tests, but that females will tend to obtain higher scores than
males, on average, on certain verbally-loadedtests and that males will tend to
obtain higher scores than females, on average, on certain spatially- and/or
numerically-loaded tests. These generalizations, which apply primarily after
puberty, have been sufficiently well-replicated to be considered reliable em-
pirical phenomena.The question of whatfactors are responsible for the phe-
nomena is, however, an unresolved one that has generated muchresearch but
few uncontested answers. Cultural sex-role socialization practices, genetic
factors, hormonalfactors, and anatomical differences between the brains of
males and females have all beenproposed as possible sources of between-sex
variance in abilities, but the conclusions that can be drawn from theresearch
that each has generated are at best equivocal.

Sex differences in RTs have also received someattention in the literature,
but the results of studies that have investigated these are even moreinconclu-
sive. Landauer, Armstrong, and Digwood (1980), for example, recently re-
ported that females obtainedsignificantly faster simple and choice RTs than
did males, and Landauer (1981) suggested that this might indicate that fe-
males “have greater cognitive abilities” (p. 90). Similar results were reported
by Fairweather and Hutt (1972), in which girls up to the age of 12 years per-
formed faster than boys on choice RTtests. Results contrary to these, how-
ever, were reported by Hodgkins (1963), Coles, Porges, and Duncan-
Johnson (1975), and Bell, Loomis, and Cervone (1982), each of which found
males to have faster RTs than females. Finally, Botwinick and Thompson
(1966), Crabbe and Johnson (1979), Yandell and Spirduso (1981), and
Jensen (1984) have all reported no significant differences between males and
females in RTs. Although there are plausible methodological reasons for
these discrepancies — for example, the use of very small samples in somestud-
ies and the failure to differentiate between reaction time and reaction-time-
plus-movement-timein others — it is nonetheless clear that the results are suf-
ficiently inconsistent to warrant further investigation. In addition, rather
than focussing on RTsto simple visual stimuli (e.g., lights on a panel), as
many ofthe studies in this area have done, it would seem to be potentially
more useful to measure RTsto verbal, spatial, and numerical stimuli and to
vary the extent to which each RTtest requires primarily short-term or long-
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term memoryprocesses.If this were done,it might be possible to identify and

isolate sex differences in speed of execution of specific cognitive processes

applied to specific types of information.

In my ownstudies (e.g., Vernon, 1983; Vernon et al., 1985), sex differ-

ences have been rare both on psychometric measuresofability and in RTs. In

Vernon (1983), for example, the mean WAIS Verbal IQ scores for males (7

= 35) and females (mn = 65) were 124.74 and 121.34, respectively. The corre-

sponding Performance IQ scores were 119.34 and 118.34. Neither set of

meansis significantly different. The largest difference between the mean RT's

of males and females on seven RT measureswas 19.57 ms. (on test requiring

synonym/antonym judgments), which yields a t of .50! Marginally more in-

teresting results were observed in Vernonet al. (1985), in which males ob-

tained significantly higher untimed Performance Scale scores (on the MAB)

than females and were consistently faster on RT tests involving scanningdigit

strings or performing simple arithmetic operations. Only the latter test

yielded a significant difference, however, and interpretation ofthe results 1S

muddied by the finding that males also obtained higher Verbal Scale scores

than females but did not obtain significantly faster RTs on any of the RT

tests involving verbal stimull.

Further analyses of these data included inspecting the RTs of males andfe-

males whoscored one standard deviation (SD) or more above or below the

mean oneither the Verbal or the Performance Scale of the MAB.Largedif-

ferences were observed between the mean RTsof high and low Verbal and of

high and low Performance females. Averaged across 11 RT tests, high Verbal

females obtained a mean RT of 669.32 ms., compared to 1113.86 ms. for low

Verbal females: a difference of 444.54 ms., or 1.67 SD units. The largest RT

differences appeared ontests involving verbal stimuli. Similarly, the mean

RT for high Performance females was 696.52, compared to 1019.41 for low

Performance females: a difference of 322.89 ms., or 1.12 SD units. The

largest difference here occurred on tests involving numerical stimuli. High

and low Verbal males obtained mean RTsof 670.21 and 774.27, respectively,

averaged across the 11 tests: a smaller difference than was observed for the

females, but still amounting to .78 SD units. Again, the largest differences

appeared ontests involving verbal stimuli. Finally, high and low Perform-

ance males obtained mean RTs of 749.28 and 726.26, respectively: a differ-

ence of —.19 SD units. Theseresults, it must be noted, are based on small

subsamplesbut, if replicated, have interesting implications. High verbalabil-

ity appears to be associated with faster RTs, particularly ontests involving

verbal stimuli, for both males and females. High performanceability, how-

ever, is associated with faster RTs (particularly ontests involving numerical

stimuli) for females but not for males. On the contrary, the high Perform-

ance males were actually very slightly slower, on average, than the low Per-

formance males.
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Pursuing this, and the issue of sex differences in speed of information-
processing in general, one ofmy graduate students — Sue Nador— has admin-
istered a large battery of paper-and-pencil tests of verbal, numerical, and
spatial abilities, and 10 RT tests involving verbal, numerical, and figural
stimuli, to samples of male and female university undergraduate students.
The paper-and-pencil measures included a vocabularytest, a test of arithme-
tic and mathematical reasoning, the space relations subtest (Form A) of the
Differential Aptitude Test (Bennett, Seashore, & Wesman, 1947), and the
Harshman Figures (Harshman & Harshman, 1983)—a measure of percep-
tual closure. The RT tests were designed to require subjects either to scan ver-
bal, numerical, or figural stimuli in short-term memoryorto access andto re-
trieve verbal or spatial information from long-term memory.Tests of the
formerincludedvariants of S. Sternberg’s (1966) probe-recognition test, and
a test requiring subjects to recognize rotations or mirror images of abstract
shapes and figures. Tests of the latter included variants of Posner’s letter-
matching task (Posner, Boies, Eichelman, & Taylor, 1969), and a test which
required subjects to make true/false decisions about geographical-location
statements of the form: “Canadais north of America”or “Ontario is west of
Alberta” (all subjects were Canadians, to whom the information in these
items was very familiar). The main hypotheses were that males and females
would differ significantly, in the usual directions, on the paper-and-pencil
tests, and that these differences would be reflected by differencesin the speed
with which they could processspecific types of information. We also wished
to explore the extent to which sex differences in RTs would occurontests
requiring primarily short-term or primarily long-term memory processes.
Mightit be the case, for example, that females can retrieve verbal informa-
tion from LTM morequickly than can males, but perhapsare no different in
their speed of scanning verbal stimuli in STM? Or that males can scan figural
stimuli or perform mental rotations in STM more quickly than can females,
but are no quickerin the speed with which they canretrieve spatial (geograph-
ical) information from LTM?

The first analyses — simple ¢ tests between the males and females — yielded
disappointing results, in that sex differences failed to appear on anyof the
variables, paper-and-pencil or reaction time. This maybe attributable to the
fact that all subjects were university students, althoughreliable sex differ-
ences have been observed on several of the same paper-and-pencil tests in
similar samples (e.g., Harshman, Hampson, & Berenbaum, 1983). As be-
fore, then, further analyses were conducted within selected subsamples, to
investigate the extent to which males and females of above or below average
verbal, spatial, or mathematical ability might differ in RTs. Because the
samplesizes wererelatively small (50 males and 50 females), “high” and “low”
ability subjects were operationally identified as those who scored half a
standard deviation or more aboveor belowtheir group mean. Thus, high and
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low ability subjects, so defined, differ by at least one SD unit on each paper-

and-pencil measure.

First, within the female sample, high verbals obtained considerably faster

mean RTsthan low verbals ontests involving scanning verbal stimuli(letters)

in STM,andretrieving verbal information (about synonymsand antonyms)

from LTM.In SD units, the differences between their means on thesetests

were 1.17 and 1.09, respectively. In contrast, high verbal females were only

slightly faster than low verbals (.34 SD units) in the speed with which they

could makespatial rotation judgments. The reverse effect was observed for

high and low spatial ability females, the former being .75 SD units faster than

the latter, on average, on the rotations RT test but essentially no different

(.07 SD units faster) on the synonymstest. Finally, females with high math

scores were faster than low math-scorers, on average, in the speed with which

they could scan figural stimuli (shapes) in STM (1.04 SD units), and retrieve

spatial/geographical information from LTM (.88 SD units), but were hardly

different (.11 SD units faster) on the verbal RTtests.

A very different pattern of results emerged within the male sample, the

most marked discrepancy being that lower ability males were somewhat

faster than higherability males, on average, on several RTtests. In addition,

while high verbal males were faster than low verbals in retrieving verbal in-

formation from LTM,the difference between their meanswas small (.33 SD

units) and not muchlarger than the corresponding difference in their speed

of scanning figural stimuli in STM (.26 SD units). Similarly, high spatial

males were only very slightly faster than low spatials in scanning figural

stimuli (.16 SD units), and showed a difference of similar magnitude (.10 SD

units) in speed of retrieving verbal information from LTM.In oneofthe few

instances in which males produced results comparable to those of the fe-

males, high math-scoring males were faster than low math-scoring males, on

average, on the geography RTtest (.69 SD units), and on the spatial-rotations

RTtest (.54 SD units), but were only very slightly faster (.15 SD units) on the

verbal RT tests.

A final series of analyses compared the RTs of high ability females with

those of low ability males, and of high ability males with those of low ability

females. First, high verbal females were significantly faster than low verbal

males on speed ofretrieval of verbal information from LTM, but were no

faster at scanning verbal (or figural) stimuli in STM. High spatial males,

however, were no faster than low spatial females on any of the RTtests, and

the largest difference between these groups’ means, although appearing on

the spatial-rotations RT test, amounted to only .37 SD units. High math

males, in contrast, did show significantly faster mean RTs than low math fe-

males in retrieval of spatial/geographical information from LTM,and in

scanning figural and numerical stimuli in STM. These groups did not differ

on any of the RT tests involving verbal stimuli. Finally, to see what would
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happenif the typical sex-differences in abilities were reversed, high math and

high spatial females were found to be no faster than low mathorlow spatial

males, respectively, on any of the RTtests, and the only test on which high

verbal males were foundto be faster than low verbal females was the one that

involved retrieval of geographical information from LTM.

In summary, while it is clear that the samples tested here were far from

ideal as sources of information regarding sex differencesin abilities, the ob-

served results nonetheless indicate that RT studies involving a varietyoftests
maybeable to shed somelight onthe issue. Specifically, insofar as the pres-
ent results are generalizable, it appears that females who are above averagein
verbal, spatial, or mathematical ability will obtain faster RTs than lowerabil-
ity females, on average,ontests involving the processing ofverbal, spatial, or
figural information or stimuli, respectively. High verbal females also obtain
faster mean RTs than low verbal males on tests involving accessing and
retrieving verbal information from LTM,butnotontests involving figural
stimuli or the scanning of verbal stimuli in STM. High verbal and highspatial
males do not consistently process verbal or spatial information faster than
low verbal or low spatial males, respectively, although high math-scoring
males are faster than low math-scoring males, on average, on RT tests
involving geographyrecall and spatial-rotations. High math-scoring males
are also faster on these RT tests than are low math-scoring females, on aver-
age, but are no different on RTtests involving verbal stimuli.

Again, the relatively small size of some of the subsamples of high and low
ability males and females must be emphasized, but an interesting pattern of
results appears to be emerging. Most salient are the differences that appear
between high andlow ability subjects within each of the sexes: the RT differ-
ences between these groups being considerably more pronounced amongfe-
males than among males. Secondly, there are some notable consistencies in
the data, such as the finding that high verbal or spatial or mathematicalabili-
ties are not associated with faster mental speedperse, but are associated (par-
ticularly within females) with faster RTs on tests that were designed with spe-
cific types of stimuli to tap specific types of cognitive operations. Thirdly,
comparisons between the high and low subsamples of males and females
(i.e., high male-low female and high female-low male) again indicate that
high scores on specific ability tests tend to be associated with faster RTs on
specific tests rather than with faster mental speed in general. Fourthly, high
verbal males, and high spatial and mathematical females, do not differ from
low verbal females, or low spatial or low mathematical males, respectively, in
the same mannerthat high verbal females, and high spatial and high math-
scoring males, differ from low verbal males, and low spatial and low math-
scoring females, respectively. In other words,it appears that sex is an impor-
tant mediating variable in terms of the degree to which differencesin abilities
will be reflected by differences in RTs.
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SUMMARY

In conclusion, this chapter has focussed on three issues pertinent to the

study of reaction timesand their relationship to intelligence and mentalabili-

ties. The results generated by research into each of these issues may be sum-

marized briefly as follows. First, RTs and speed of information-processing

are reliably and quite highly correlated with measures of intelligence. Sec-

ond, this correlation obtains, and to approximately the same degree, both

when the measuresof intelligence are administered under timed conditions

and whenthey are administered under untimed conditions. Third, several RT

tests and the general speed factor extracted from thetests’ intercorrelations

have a substantial heritable component. Only one of three specific speed of

information-processing variables STM storage-processing trade-off— was

found to be heritable. Measures of speed of STM scanning of information,

and of LTMretrieval of information, showed low MZ and DZintraclasscor-

relations, replicating the results of the only other study to have investigated

this issue (McGueet al., 1984). Fourth, sex differences in mental abilities —

specifically, verbal, spatial, and mathematical ability — mayberelatedto dif-

ferences in the speed with which males and females can perform specific cog-

nitive operationson specific types of stimuli, but further research employing

more representative samples is needed before any definitive conclusions can

be drawn.
To repeat a point that was madein the introduction, RT research is en-

joying increased recognition by researchers onintelligence. To be sure, not

all researchers are equally enthusiastic about the potential of RT workin the

study of intelligence; indeed, several of the authors in this volumeare quite

critical both of the work that has been done andof theoretical positions that

place more importance on speed of information-processing than they believe

is deserved. This notwithstanding, the results of recent research on RTs have

challenged a numberof long-standing “truths” about intelligence, and it is

surely not unrealistic to suppose that future studies will continue to advance

our understandingofthe nature of individual differences in mentalabilities.
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CHAPTER 2

Speed of Information
Processing, Reaction Time,

and the Theory of Intelligence

H. J. Eysenck
Institute of Psychiatry

THE TWO PARADIGMSOF

“INTELLIGENCE” — GALTONVS. BINET

The theory that “mental speed”is fundamentalto cognitive processes, andis
correlated with intelligence, goes back to the very beginnings of modern em-
pirical studies of intellectual processes, as is clearly indicated in Berger’s re-
view (1982). The debate centering upon this issue cannot be understood ex-
cept with reference to two majorpoints of view relating, respectively, to the
existence of different definitions and conceptions of cognitive psychology,
which requireto be carefully distinguished, and the opposite attitudes taken
by two great schools, namely those of Galton and of Binet, towards the con-
ception and measurementofintelligence.
Hebb (1949) and Vernon(1979) have distinguished betweenIntelligence A,

Intelligence B, and Intelligence C, referring, respectively, to biologicalintel-
ligence, underlying all cognitive processes and differences therein; social in-
telligence,i.e., Intelligence A applied to everydaylife affairs, and inevitably
mixed up with a large numberof different noncognitive factors, such as per-
sonality, socio-economicstatus, education, experience, etc.; andlast, Intelli-
gence C, which refers to the psychometric measurement of intelligence,i.e.,
the IQ.
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Figure 1 shows the implications of these terms, and the relation between

the three concepts. Additionally, the center part of the “Biological Intelli-

gence”circle shows someof the measures used to define it, e.g., EEG, aver-

aged evokedpotentials, contingent negative variation, etc. Notations outside

the circles suggest someof the variables which have been shownto influence

and shapethe varioustypes of “intelligence.” Sternberg (1982, 1985) may be

taken as a representative of the very popular school which identifies “intelli-

gence” with Intelligence B, and disregards Intelligence A completely. In the

subject index of Sternberg’s Handbook ofHuman Intelligence, there is no

entry for reaction time, and none for evoked potentials which have been

found to be good measuresofIntelligence A (Eysenck & Barrett, 1985).

I would argue that the usual practice of science is to analyze complex con-

cepts into their constituent parts, so that we should regard Intelligence B as

the dependent variable, and study the influence on it of independentvaria-

bles such as Intelligence A, neuroticism, extraversion, psychoticism, socio-

economic status, education, experience, age, learning, strategy, and the

manyother factors which mayplaya role in determining individual differ-

ences in this variable. While Intelligence B probably corresponds fairly

closely to popular conceptionsofintelligence, this can hardly be the criterion

for a choice which should be based onscientific rather than popular consider-

ations.

Therole of IQtests is interesting, because they seem to stand half-way be-

tween Intelligence A andIntelligence B, being intended for the most part as

measuresofIntelligence A, while being afflicted with some of the same diffi-

culties as is the measurement of Intelligence B, namely the intrusion of

unwanted environmental factors. Sternberg (1985) has mentioned the curi-

ous tendency of many psychologists to use IQ as a criterion of intelligence

even though they are trying to supplementit, or even to substitute some other

measure for it. This, however, is not as unreasonable as it sounds; there is
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goodevidencethat IQ,despite its imperfections, does measure general cogni-
tive ability to a reasonable extent (Eysenck, 1979), so that it can be used as an
admittedly imperfect criterion against which to test novel measures which are
being suggested as being moreclosely related to Intelligence A. When
Torricelli first produced a thermometer,he left the top open, thus leading to
a measurement which was a mixture of temperature and barometric pressure.
Pascal demonstrated that closing the top wouldgive a better measure of tem-
perature; yet, if the new thermometer had not shownhighcorrelations with
the old, it would have been verydifficult to establish it as a proper index of
temperature. |

In this chapter we shall be mainly concerned with Intelligence A,anditsre-
lation to IQ;this is not to say that such investigations as those summarized in
Sternberg’s Handbookare notof interest and indeed of considerable value.
The practical application of humanintelligence(i.e., biological intelligence)
to everydaylife problemsis obviously of considerable practical and theoreti-
cal interest, and as longasit is realized that we are not dealing here with Intel-
ligence A, but with Intelligence B, such studies are obviously bothscientific-
ally and practically valuable, and add to the body of theory which is being
built up around the concept of humanintelligence.

Sir Francis Galton and Alfred Binet are essentially the originators of the
two majorstreams of research and theory whichhaveled to countless empir-
ical investigations, and an understanding of the differences between them,
and the resulting differences in attitude, conception, and investigation,is of
fundamental importance. Galton, essentially, was concerned with Intelli-
gence A (Galton, 1892, 1943), Binet, more with Intelligence B (Binet, 1903,
1907). Reeves (1965) has given a good sketch of their divergent approaches.
In the first place, Galton believed in the meaningful postulation of a gen-

eral conceptof“intelligence” which was fundamentalto all cognitive proces-
ses, and which mediated differences between people in the degree to which
these processes could be madeto work successfully. Binet, on the other hand,
thought ofintelligence as a statistical artifact, namely a mere average of a
number of independent or semi-independentfaculties, such as memory, sug-
gestibility, emotion, verbalization, etc. In other words, Binet really should
not have used the term intelligence at all, as he considers the conceptan arti-
fact, but, of course, foolish consistency, as Emerson remarked, is the hob-
goblin oflittle minds.

In the second place, for Galton differences in intelligence were almost en-
tirely caused by genetic factors, whereas Binet was far moreinterested in en-
vironmental factors, which is not unnatural in an educationalist whose pri-
mary concern was the improvementof children’s achievements.
The third major difference between Galton and Binetlies in the type of

measurement whichthey suggested as being appropriate to the conceptof in-
telligence. Galton,in line with this physiological and biological conception of
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Intelligence A, advocated such rather primitive types of measuresas reaction

times, sensory discrimination, etc. Binet, in line with his conception ofIntel-

ligence B, suggested problem-solving, following directions, learning, and

memorizing as being typical of the application of intelligence to scholastic

and other problems shownbychildren.

It cannot be said that either Galton or Binet won this particular battle; in-

deed,in view of the fact that we are talking about different conceptionsofin-

telligence, they were really not contradicting each other. Thereis little doubt

nowthat the data almost force us to adopt the conception of a general factor

of intelligence, labeled “g” by Spearman (1927), thus supporting Galton.

However,it is also now necessary to recognize the existence of a numberof

group or “primary” factors, such as visuo-spatial ability, verbal ability, nu-

merical ability, memory etc., closely resembling some of those put forward

by Binet (Eysenck, 1979). Similarly, with respect to the genetics of IQ, the

evidence strongly supports Galton in postulating that heredity plays a very

important part, but the evidence is equally clear that environmental factors

too have a powerful effect on individual differences in IQ (Eysenck, 1979).

As far as the measurementof intelligence is concerned, it has been shown,

andwill be arguedin detail in this chapter, that IQ and Galton-type measures

of intelligence are indeed quite closely related, as indeed would be expected

from the type of relationship suggested in our Figure 1. Thus, in a very real

sense, both wereright in what they asserted, and wrong in whatthey denied.

There does remain oneinteresting difference, however, whichis of consid-

erable importance. Galton andhis successorsinsisted on an experimental ap-

proach to the problem ofintelligence, i.e., the formulation of an explicit

theory, and its testing by the use of specific types of tasks. Binet andhisfol-

lowers, on the other hand,essentially adopted the psychometric approach,

i.e., relying on correlational studies to suggest theories, and to produce some

kind of taxonomic order in whatatfirst sight appeared to be chaos.This dis-

tinction is less absolute than it might appearat first, and some investigators

appearon bothsides of the fence. Spearman and Burt,as we shall see, started

out on the experimental side, and then switched to psychometric studies.

Nevertheless, the distinction is an important one,and,as it is very relevantto

a consideration of speed as a fundamentalvariable in intelligence, it may be

worth documenting, particulary as theories of mental speed were among

those postulated by Galton and someofhis early followers.

THE EARLY DEVELOPMENTOFRT-IQ RESEARCH

It has already been mentioned that Galton suggested the use of reaction time

measures, sensory discrimination, and similar elementary investigations as

useful measures ofintelligence. Spearman (1904) has reviewed a numberof

early studies along these lines, and has contributed his own investigation of
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sensory discriminations in the fields of sound, light, and weight, using rat-

ingsas his criterion ofintelligence. When properly corrected for attenuation,

these correlations approach unity, thus suggesting the correctness of Galton’s

hypothesis. Work on the Seashore (1913) test of pitch discrimination has

given significant correlations with IQ ranging from .14 to .58, and averaging

around .35. More recent work by Stankov and Horn (1980), Buktenica

(1971), Westphal, Lentenegger, & Wagner (1969), and others suggests that

Spearman’s hypothesis might have been alongtheright lines. Most important

here is the recent work of Raz, Willerman, and Yama (1987), which is

methodogically the most sophisticated, rules out alternative explanations

and gives very positive results supporting the Galton-Spearman hypothesis.

Burt (1909) similarly used sensory tests such as touch discrimination,

weight discrimination, sound discrimination, and comparison of lines, and

motortests such as tapping, card dealing, card sorting, and alphabetsorting;

also used wereassociation tests of immediate memory, a mirror drawingtest,

and an early version of the now popular“inspection time”(IT) type of meas-

ure, called by Burt “spot pattern.”It is interesting to note that the “spotpat-

tern” test has a correlation with intelligence of .83 (corrected for attenua-

tion), but that the sensory tests appearrelatively valueless. It is curious that

neither Spearman nor Burt followed up these promising results, and that

both turned to psychometric investigations, abandoning the experimental

field entirely. In fairness to Binet, it should be added that he, too, in his

earliest attempts at measuring intelligence, used tests of sensory discrimina-

tion, reaction times, and other factors in which rate of response was an im-

portant element (Peterson, 1925). He, too, just like Spearman and Burt,

abandoned this type of elementary measureof individual capacity to switch

over to the type of complex cognitive test which has becomeassociated with
his name.

Manyother psychologists in those early days took seriously the “mental

speed” hypothesis, and a good review of this early work is available in

MacFarland (1928). Among these early studies were those of Gilbert (1894),

Bagley (1901), Wissler (1901), Aikins, Thorndike, and Hubbell (1902),
Brown (1910), Wyatt, (1913), McCall (1916), Anderson (1917), Gates (1924),
Freeman (1923), Garrett (1922), Chapman (1924), Bernstein (1924), High-

smith (1925), Peak and Boring (1926), Sisk (1926), and Travis (1925).
There is little agreement in the results of these various studies, and

Hunsicker (1925) is correct in drawing attention to the lack of methodolog-

ical sophistication apparent in manyofthe reports. Nevertheless, McFarland

(1928) concludesthat: “In the six more recent studies of the past four years
where investigations have been conducted undercarefully controlled condi-
tions, the evidence, although contradictory, decidedly tends to favourthe ex-
istence of a positive relationship between rate and ability in mental tests”
(p. 610). Of particularinterest is a finding by Travis (1925) of a very high cor-
relation between mental ability and rate of conduction of the nerve impulse
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in a reflex arc. It is worthwhile quoting the final statement by McFarland in

full. “It should be clearly noted that the more refined and objective the inves-

tigation, the more convinced the experimenter becomes in each case. . . ofa

vital relationship between rate and mental abilities as tested by theintelli-

gence test... .Itis evident. . . that further research confined to laboratory

techniquesis necessary in orderto clear the issue andto establish negative or

positive significance of this important psychological problem”(p. 610.)

Unfortunately, interest in the experimental study of intelligence began to

wane,and this recommendation wasnot followed. There was,indeed,a brief

interest in the problem of speed as opposed to power in mental testing,

exemplified by the early work of May (1921) and Ruch and Koerth (1923).

These and many subsequent investigators correlated scores of groups of

subjects on IQ tests whenstrict time limits were imposed, with scores ob-

tained whenthesetime limits were expanded, or unlimited time was allowed.

The findings in general were that very high correlations were obtained be-

tween timed and untimedtest scores, suggesting that speed wasofthe es-

sence. These studies, too, can be subject to criticism (McFarland, 1928), but

they did lead to the fundamentalinvestigation of the problem by Thorndike,

Bregman, Cobb, and Woodyard (1927), which may besaid to constitute an

important theoretical advance (Berger, 1976).

Thorndike suggested that ability should be analyzed into level, range, and

speed. While acknowledging that IQ tests combining speed,level, and range

in unknown amounts might be practically useful, “for rigorous measure-

ments ... it seems desirable to treat these three factors separately, and

to know the exact amount of weight given to each when we combine them”

(Thorndike et al., 1927, p. 75). He never really followed up these distinc-

tions experimentally, but his incisive discussion of the problems involved

in IQ measurement, combinedWithSpearman’s (1927) criticism of the

“hotch-potch” procedure employedin scoring intelligence tests, suggested to

the writer the need for more careful dissection of intelligence test scores

(Eysenck, 1967, 1973). The theoretical analysis he offered of the IQ was the

result of over 10 years of empirical and theoretical work, carried outfirst in

conjunction with Furneaux (1952, 1961) and later on with White (1973,

1982). Important contributions to the model were also madebyIseler (1970).

The genesis of the modelis explained in detail in Eysenck (1982).

A MODELFOR MENTAL

SPEED-INTELLIGENCE REACTIONS

In essence, the model asserts that there are three major components to the

conceptof the IQ,all relatively independentof each other. The first of these,

and probably the most fundamental, is mental speed, the speed with which
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cognitive functions are accomplished, and a conception possibly identical in

nature with the speed of information processing. The second variableis per-

sistence, i.e., the degree to which the search process assumed to be funda-

mental to problem solving is continued over time; this may be a personality

variable interacting with mental speed. The third variable postulated is some

process of error checking or error recognition,i.e., a tendency to eliminate
errors from the final solution offered in the test. The studies quoted present
some empirical evidence for the validity of this separation, but it should be
noted that the independence of the factors depends very much on parameter
values such asthe difficulty level of the items; the instructions given to sub-
jects, e.g., with reference to guessing; the mode of presentation, i.e.,
increasing difficulty level or randomized difficulty level; the time limits
imposed (or not imposed,as the case might be); and so forth (Berger, 1976;
Brierley, 1961.)

The majorpoint to be noted about this modelis the primacy given to men-
tal speed as the most fundamental variable in accounting for individualdif-
ferences in intelligence (Eysenck, 1967). This is a revival of the early work
summarized by McFarland, andthe theorizing of Galton andhis successors,
but it also presents many newfeatures, both theoretical and experimental.
Apart from the division of IQ into three major aspects, of which only one
(mental speed) could be regarded as fundamentally cognitive in nature, both
persistence and error checking being moreclosely related to personality,
there are three major points which emerge from theresearch. In thefirst
place, it gives rise to a “structure of intellect” model (Eysenck, 1953), which
specifies a variety of mental processes, such as reasoning, memory, percep-
tion etc.; a variety of test materials, such as verbal, numerical, and spatial;
and, finally, a quality dimension going from speed to power.Figure

2

illu-
strates this model, which of course bears somerelation to the later Guilford
model (Guilford & Hoepfner, 1971). The “quality” continuum is not in-

_ tended to suggest a fundamental qualitative difference between speed and
power; it is merely descriptive of the fact that sometests rely exclusively on
the measurement of speed,all subjects being able to solve correctly all the
problemsin the test, whereas the so-called power tests contain items which
somesubjects could never solve, howeverlong the time allowed. The inability
of some subjects to solve someitemsin the power test was assumedto be due
to differences in speed, as shown below;this was supposedto be the funda-
mental variable in all cognitive processes.
Furneaux (1961) took up the suggestion contained in some of the early ma-

terial that the proper unit of analysis should be time spent on each item, and
demonstrated a very important relationship between time taken to correctly
solve an item andthedifficulty level for that item. This observed relationship
is shownin Figure 3, taken from Eysenck (1953). It shows the relation be-
tween difficulty level of test items and time (A) andlog time (B) needed for
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solution. Alpha, beta, and gammaarethree imaginary subjects of high, me-

dium, and low mental ability, respectively. The solid lines reflect the actual

solution times; the stippled lines suggest how long solution times would have

been for moredifficult items had the individuals in fact succeeded in solving

them (i.e., had greater persistence).

It will be seen that all three lines in B (log time) are in fact straight and par-

allel; this is an important empirical finding which explains why so-called

speed and powertests are so highly correlated. If, indeed,all regression lines

of log time on difficulty level are straight and parallel, then clearly the inter-

cepts at the 100% solutionlevel,i.e., the level of items having the lowest pos-

sible difficulty, would be sufficient to predict solution log times at all other

difficulty levels. How long an individual continued to search for a solution

would of course be a question ofhis or her persistence, not itself a cognitive

variable. As only correctly solved items are used for the purpose of con-

structing these diagrams, error checking, while important for total number

of successes, is irrelevant here. Later work(e.g., Berger, 1976; Brierley, 1961)

has only partially confirmed these results, but, in the absence of any knowl-

edge of the necessary parametervalues to properly define the relations, par-

tial success is all that is to be expected until we have a much better under-

standing ofall the factors involved.

If there is any truth in this postulated relationship, then it should follow

that choice reaction times, inspection times and similar measures should have

high predictive value for much more complex problemsandfor IQ tests gen-

erally; such reaction timetests clearly lie at the 100% solution level of diffi-

culty, i.e., near the intercept, and should therefore be highly predictive of so-
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lution times for items of much higherdifficulty level. This, at least, was the

argument put forward by Eysenck (1967) for taking seriously work on reac-

tion time such asthat of Goldfarb (1941), Roth (1964), and others.

The third major point of the Eysenck-Furneaux model was the use of

Hick’s law (Hick, 1952) in postulating a search mechanism that would ex-

plain the observedrelationships. Hick, in his paper, had shownthat therela-

tionship between the time taken to react in a multiple-choice situation and the

complexity of the choice situation could be expressedin the following form:

RT = K logM,

where RTis a choice reaction time, K is an individual constant, and M is a

function of the complexity of the choice situation. According to Hick,this is

the relationship one would expect to observe if multiple-choice activity in-

volved successive binary classifications. As the brain seems to consist of a

vast numberof nearly identical units, he argued that it might be possible to
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posit thatall its activities involved sequences of elementary operationsoflike

kind and duration. Such a device might well function by carrying out succes-

sive binary switchings, with each “switch” taking the same time andinvolving

the samesort of simple basic activity. Furneaux (1961) argued that this hy-

pothesis of Hick’s seemed to imply that multiple-choice reaction-time is a

measureof the time required for a search to be completedin the brain for the

set of “connections” which would initiate a required behavior. He further ar-

gued that problem-solving behavior should perhapsbe regardedas a special

case of a multiple-choice reaction, and that it would be possible to postulate,

within problem-solving processes, the repeated occurrence of some elemen-

tary activity which requires a substantially constant time for completion.

The theory is best stated in Furneaux’s own words (Furneaux, 1961,

pp. 185-186).

The brain structure of any individual, P, includes a set of p’ neural elements

whichparticipate in problem-solvingactivities. It is not necessary at this stage

to adopt any particular view asto the nature of these elements, which might be

either single neurones or much more complexstructures. The solution of a par-

ticular problem, A,of difficulty, D, involves bringing into association a particu-

lar set, pN,, of these elements, interconnected in someprecise order. (The terms

‘bringing into association’ and ‘inter-connected’ should notnecessarily beinter-

preted literally after the mannerof, say, an electrical circuit. For example, the

almost simultaneousfiring of two otherwise independent units could constitute

one method of bringing them into association, provided some device existed

which could detect the simultaneity, while the exact orderof firing might repre-

sent the mode of interconnection.) When problem is first presented single ele-

mentsare first selected, at random, from thetotal poolp’and examinedto see

whether any one of them, alone, constitutes the required solution. A device

must be postulated which carries out this examination —it must bring together

the neural representations of the perceptual material embodying the problem,

the rules according to which the problem hasto be solved,and the particular or-

ganization of elements whosevalidity as a solution has to be examined. It must

give rise to somesortof signal, which in the case of an acceptable organization

will terminate the search process andwill initiate the translation of the accepted

neural organization into the activity which specifies the solution in behaviour

terms. Alternatively, if the organization under examination proves to be

unacceptable, a signal must result which will lead to the continuation of the

search process. It will be useful to refer to this hypothetical device under the

nameof ‘the comparator’.

If D # 1, the comparatorwill reject each of the p%trial solutions involving

only a single element, which, when correctly interconnected, might constitute a

valid solution. Suppose D # 2, then all possible organizations of the p* ele-

ments taken two at a timewill also be examined and rejected, after which we can

imaginethat the search will continue amongsetsofthree, four, five, etc. IfD =

r, then the comparatorwill reject in turn all the organizations involving from 1
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to (r — 1) elements, so that there will be a time 7 du E sec within which a solu-=

tion cannot occur, where:

T= the time required for completing a single elementary operation
within the search process.

T » E =

__

the numberof elementary operations involved in the search
process upto the level of complexity (7-1).

1

Similarly, after a time 7 Xi E sec all possible organizations embodyingr el-Fam

ements will have been examined,so that correct solutions to problemsof diffi-
culty r will always arise within the period defined by the two limiting times

T » E and 7 » E. In terms of such a hypothesis, therefore, Vz, is in no
r-1 r

sense a function of error of measurement butresults mainly from the rangeof
times required toset up all possible modes of neural organizationat a particular
level of complexity. It is perhaps worth noting, in passing, that within the
frameworkofsuch a hypothesis, error would be accounted for by positing that
during the search process organizationsarise at levels of complexity 7 — o,,r —
02... ,€tc., which satisfy most, but notall, of the requirementsofa true solu-

tion to a problem ofdifficulty r. If the comparator has characteristics analo-

gousto those of “band-width”in electrical and mechanical discriminators,i.e.,

if its discriminating powersare such that neural organizations whichclosely re-
semble the organization representing a correct solution may be accepted as the
required organization, then the possibility of error arises. The frequencyofer-
ror, thus conceived, will be a function of the band-width of the comparator,
and since the numberof “nearly-correct” organizationswill increase as D is in-
creased, the likelihood of error will increase with D.

This probability is clearly dependent on the exact nature ofthe search process.
Finally, continuanceis easily defined in terms of such a “search” hypothesis;it
is a measure of the length of time during which, following the initiation of
search, the comparator remains “set” for a particular problem.

This theoretical conceptionlinks our theory with later AI (artificialintelli-
gence) theories such as those popularized by Newell and Simon (1972) and
the book on human problem solving by Winston (1984). Our modelantici-
pated features of the computer which were to be used in AI theories, as, in-
deed, had Hickin his original model, and recent work onartificial intelli-
gence in general, and the search process in particular (Barr & Feigenbaum,
1981, 1982; Cohen & Feigenbaum,1982) has thrown muchlight on the prop-
erties of the search process, properties which could with advantage be
transferred from computer models to the study of humanintelligence.
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THE ERLANGEN SCHOOL

It was thus, after 40 years of almost complete neglect (from 1925 to 1965,

approximately) that reaction time began to enter again the field of intelli-

gence measurement, and a great deal of important empirical and theoretical

work was done by two major schools. One ofthese, the Erlangen schoolin

Germany, has not received anything like the attention it deserves, probably

because its findings were published in German and appeared in journals

which, even in Germany, are not frequently and widely read by psycholo-

gists, such as the Grundlagenstudien aus Kybernetik und Geisteswissen-

scharten, or the Kybernetische Pddagogik. The other, much better known,

school is that of Jensen (1982a, b). It is noteworthy that the two schools

worked in complete independenceof each other, but that they obtained strik-

ingly similar results, and came to strikingly similar theoretical conclusions.

Wewill begin our discussion with the Erlangen school, and then go onto the

Jensen school. Thereafter, we shall consider the criticisms made ofthis work,

in the light of our own investigations.

The work of the Erlangen School (Frank, 1960; Lehrl, 1983) takes its em-

pirical grounding from the work of Roth (1964), who used the Hick paradigm

to argue that what should correlate with IQ would be the slope of the Hickre-

gression line (b). Lehr(1983) illustrates Roth’s findings in Figure 4, which

showsthe increase in reaction time with larger numberof choices (bits), ac-

cordingto the IQ ofthe subjects, in a simplified diagrammatic fashion. Actu-

ally, the correlation of the angle of this regressionline for Roth’s 58 subjects

is only —.39 with the Amthauer (1955) intelligencetest, i.e., the less intelli-

gent subjects showed a greater increase in reaction time compared with the

more intelligent subjects. In this experiment, Roth used reaction time +

movementtime, rather than separating the two as Jensen and others have

since done.

Bieger (1968) repeated the study on 50 university students, and obtained a

correlation of —.21, which goes to —.33 on correcting for restriction of

range. It thus seems that we have here a replicable phenomenon, although

Amelang (1985) has pointed out a number of weaknessesin these studies.

Other studies of the Erlangen School have been reported by Oswald (1971)

and Oswald and Roth (1978), using complex types of reaction tests, such as

sorting playing cards accordingto different aspects such as color, number of

points, or both together. As Burt (1909) had already found, sorting was

highly correlated withintelligence. Oswald and Roth (1978) used the number

sequencetest, in which numbersare printed in arandom manner ona sheet of

paper and the subject has to connect them in sequence, i.e., drawing a line

from 1 to 2, 2 to 3, 3 to 4, etc. This test has in the past been found to be a good

measure of reminiscence (Eysenck & Frith, 1977), so that the possibility ofir-

relevant factors entering into the measurement cannotberuled out. Lehrl
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FIGURE 4. Relationships between information in bits, reaction time in milliseconds,
and IQ. Aafter Lehr! (1983).

(1980) has published a special Kurztestfiir Allgemeine Intelligenz (KAI), in
which subjects are given series of 20 letters. Subjects are asked to speak the
letters aloud in sequenceas quickly as possible, and the timetakenis the score
on the test. Lehrl reports high correlations with intelligence, and Figure 5 is
quoted from this study to show therelationship between IQ (ordinate) and
the KAI score used by Lehrl on the abscissa.

This score is based on some arguments deriving from information-
processing theory. Hestarts with the stochastic independenceofthe 20letters
used in the test, which meansthat the recognition of the single letter requires
between 4.7 and 5 binary decisions(bits). Accordingly, the 20 letters contain
approximately 100 bits of information, and, from the time taken to read the
20 letters, Lehrl calculates the duration of what he calls the “Subjektive
Zeitquant” (SZQ), which, according to Frank (1960, 1971), corresponds to
the duration of one psychological moment. Dividing these “psychological
moments” by the numberof seconds gives the values on the abscissa.If it
takes a given person 5 secondsto read the 20letters, that would give an indi-
vidual SZQ of 1-20 bits divided by seconds, i.e., a duration of 50 milli-
seconds. For the average adult, the typical SZQ is 1/15 or 1/16 bit/sec, which
correspondsto 57 to 63 milliseconds, respectively.



34  EYSENCK

   
   

IQ 4 /
/

140 -

130 -

120 -
m+1s.d

110 - | ca. 344of adults !

mean ;
100 4------srt |

ca. 34h of adults 1
|

90- oy
m-1s.d , )

oe eee ee eee eee |
{

80 - ) |
| |

|

| ) |
70 - y, i )

/ ' )

) | |
, . |
 

7“

-t 'T T rT

O 4 8 12 16 20 24 28

FIGURE 5. Relationship between IQ and Lehrls’s Zeitquant. After Lehr! (1983).

Onfindings such as these, Lehr] (1983) has based the Erlangen modelillu-

strated in Figure 6. Information about changes in the outer world,or in the

body, reaches the cortex by the way of the sense organs and the sensory

nerves, transmitting in each second between 10° and 10!! bits. Of these, of

course, only a small proportion can bereceived by the cortex, and this flow of

information (Cx) amounts to between 15 to 16 bits per secondin the average

adult. In other words,there is a maximum of15 to 16 bits of informationthat

can be consciously received by the cortex, giving information aboutthe outer

world or the body,or consisting of memoryretrieval data. This capacity also

formsthe upperlimit of the amount of information used in cognitive activi-

ties, such as changes of combination of items of information through think-
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ing or creative activity, as in problem-solving. Part of this information finds
a place in long-term memory,whereit can be stored and can be accessed at
any time.

In addition to the speed of information-processing, Frank and Lehrlrec-
ognized as important the duration of short-term memory (TR), which corre-
spondsto the time during which informationis readily accessible before ei-
ther being forgotten or being transferred through a consolidation process to
long-term memory. On the average, Tp amounts to between 5 and 6 seconds,
and information offered during the period of this duration would be avail-
able to the person concerned withouteffort.

Accordingto the Erlangen theory, it is the product of TR and Cx whichis
identified as a cause of differencesin phenotypic intelligence, i.e., IQ scores.
AsEysenck (1985) has pointed out, the great advantage of this new way of
looking at the problem of individual differences in intelligenceis that all the
values entering into the equation can be measured directly in terms of objec-
tive and absolute units (bits and seconds), rather than, as in the case of IQ
measurements, in termsof relative values and percentiles. Lehrl’s theory of
intelligence is clearly based on two elements, rather than on one single ele-
ment. Cx, representing the speed of processing of information, is opera-
tionalized through the speed of reading 20letters. TR, representing the dura-
tion of short-term memory,is operationalized by through the numberoflet-
ters or digits that can be correctly reproduced after intervals of 1 second.
Whatcanbesaid in criticism of the theory? In the first place, the number

of subjects used in these studies is not large enoughto give one confidence
that the correlations observed give an accurate value for the total population,
apart from the fact that populationsare not always clearly identified. In the
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second place, the methods used are not described in sufficient detail to make

replication easy, or even possible. In the third place, factors of learning and

experience are disregarded. Taking the measurement of Tr, it is known that

unpracticed subjects are able to reproduce between 7 and 10 digits, respec-

tively. Paul Baltes and his colleagues at the Max PlanckInstitute in Berlin

have shown that, by using appropriate techniques of mnemonics, any adult

of average intelligence can be taught to reproduce somethinglike 90 letters or

digits (Baltes & Kliegl, 1985.) Similarly,it is likely that the speed of reading 20

letters can be improved greatly by practice.

It is important to draw attentionto the possibility of learning and environ-

mental variables generally, because Lehr] (1983) has brought his informa-

tion-processing theory ofintelligence in direct contact with the rather novel

genetic theory of intelligence recently advanced by Volkmar Weiss (1982;

Weiss & Mehlhorn, 1982). Accordingto this hypothesis, differences in intelli-

gence are mediated bya single pair of alleles; one of these (M:) is connected

with a high level of intelligence, and has a frequency in the population of

20%, whereas the other (M2) is connected with low levels of intelligence, and

has a population frequency of 80%. Assuming assortative mating amounting

tor = .50, the probability of an individual inheriting both thealleles fa-

voring high intelligence would be 5%, i.e., producing a pure genotype of

M,M1. The opposite pure genotypegiving rise to low IQ (M2Mz2) would occur

with a frequency of 68%. The remainderof the population,1.e., 27%, would

form a mixed type (M;Mz2). Weiss argues that the MM; type processes twice

as much information as the pure genotype M2M),with the mixed type lying

exactly between these two values.

The mean IQ of people with the genotype MiM;,would be around 130,

whereasthe other pure genotype, M2M2, would have a meanIQ of 94, witha

mixed type of M:M>averaging an IQ of 112. Weiss has pointed outthat, be-

cause of the relative nature of the IQ measurementofintelligence, his hy-

pothesis could only be tested by means of measures of information proces-

sing. This has been done (Lehrl & Frank, 1982), and their findings seemed to

verify the Weiss hypothesis. According to their findings, the M2M2 type

shows a short-term memory store amountingto 70 bits, the M;M2 type one of

105 bits, and the M,M;type one of 140 bits. The simple relationships ob-

taining between these values (1:1.5:2) suggest, according to Lehrl, that the

behavioral, genetic, and information-processing approaches to intelligence

are on the point of discovering some very simple lawsof nature.

Lehrl (1982) also attempts to demonstrate quantitative equivalence of SZQ

and some measures derived from evoked potential determinations taken

from Ertl (1971). He claims remarkable congruence between the SZQ values

and the event-related potential, but it should be rememberedthatthere is no

rationale to allow usto identify intelligence with the measure of evoked po-

tential taken from Ertl in what appears a rather arbitrary manner. In addi-
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tion, the measures taken by Ertl showed only a low correlation between IQ
and AEP,andthere are manydifferent choices that could be made within his
measurement system, other than those used by Ertl and Lehrl. Lehrl does not
give any particular reasonsfor his choice, and goes on to say that “attempts
to explain the observed phenomenabelong within the competence of neuro-
physiologists” (p. 182). Without some such explanatory hypothesis,it is dif-
ficult to accept the equivalence of Lehrl’s SZQ and the evoked potential mea-
sures singled out by him. Lehr] (1983) also quotes Oswald and Seus (1975) as
demonstrating correlations between IQ and averaged evoked potential, but
this also does not seem to justify the particular choice or identity made by
him.

THE JENSEN MODEL

Jensen baseshis rationale of the importance of a time elementin mental ef-
ficiency on a few well-established concepts and principles of cognitive psy-
chology. Thefirst of these is that the consciousbrain acts as a one-channel or
limited capacity information processing system. It can deal simultaneously
with only very limited amounts of information, as also postulated by the
Erlangen School. This limited capacity also restricts the number of opera-
tions that can be performed simultaneously on the information that enters
the system, from external stimuli or from retrieval of information stored in
short-term or long-term memory. As Jensen points out, speediness of mental
operationsis advantageousin that more operationsper unit of time can be ex-
ecuted without overloading the system.

Secondly, there is rapid decay of stimulustraces of information, so that
there is an advantageto speediness of any operations that must be performed
on the information whileit is still available. Thirdly, to compensatefor lim-
ited capacity and rapid decay of incoming information, the individual may
resort to rehearsal and storage of the information into intermediate or long-
term memory (LTM), which hasrelatively unlimited capacity. However, the
process of storing information in LTM also takes time, and therefore uses up
channel capacity, so there is a trade-off between the storage and the proces-
sing of incoming information. The more complex the information and the
operations required onit, the more timewill be required, and consequently
the greater the advantage of speediness in all the elemental processes in-
volved. Loss of information due to overload, interference, and decay of
traces that were inadequately encodedor rehearsed for storage orretrieval
from LTMresults in breakdownandfailure to graspall the essential relation-
ships amongthe elements of a complex problem neededforits solution. The
speed of information processing should, accordingly, be increasingly related
to success in dealing with cognitive tasks to the extent that their information
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loadsstrain the individual’s limited channel capacity. These hypotheses could

easily be accommodated within the requirements of the Erlangen model.

The measurementof reaction time has not always been uniform,but,in re-

cent years, it has becomefairly standardized around the procedure used by

Jensen (1982a, b). The subject sits in front of a panelin the center of which1s

a button which heor sheis required to press down with his or her index fin-

ger. Around the perimeter are eight lights, arranged in the form of a semi-

circle; in front of eachlight is another button. When one of the lights lights

up, the subject is required to removehis or her index finger from the button

he or she is pushing down,andpress downthe button in front ofthe light that

has gone on. Twotimesare recorded; one is the reaction time (RT), whichis

measured from the momentthelight goes on to the momentthe subject re-

moveshis finger from the button. The movement time (MT)is the time span

from the momentthe subject removeshisor her finger from the original but-

ton, to the momentheorshe depresses the button in front ofthe light that has

gone on.

It is possible on this apparatus to measure simple and various types of

choice reaction time. When simple reaction time is measured, a cover is

placed over seven ofthe lights, so that only oneis visible. When there is a

choice between twolights, all the others are obscured by a cover. Similarly,

whenthereis a choice between fourlights, the remaining four are covered.It

is only for the choice betweeneightlights that all the lights are uncovered.

Jensen (1982a, b) gives a thoroughdiscussion of the literature to that date,

including his own contributions, and formulates a number of conclusions.

The most important of these are the following: (a) Simple reaction time

shows someslight correlation with intelligence, usually around —0.2 to

— 0.3. (b) Simple movement time showsnegligible correlation with intelli-

gence. (c) Choice reaction time shows more substantial correlations with IQ

than does simple reaction time. (d) Choice movementtime showssignificant

correlations with IQ. (e) As the number of choices in the array (bits) in-

creases, the correlation of RT with IQ increases. (f) The angle of the Hick

slope (b) is negatively correlated with IQ. (g) The variability of RT measure-

ments is negatively correlated with IQ, andthis correlationis higher than that

of any of the other RT or MTvariables consideredso far. This is an impor-

tant finding, although of course there must be a statistical relationship be-

tween RT andvariability; if variability is great, there clearly must be many

long RTs, which would preclude a short meanor median RT. Nevertheless,if

variability correlates more highly than RT with IQ, then this cannot be a sim-

ple artifact of the statistical relationship between them. (h) Reaction times

involving STM,as in the Sternberg short-term memory paradigm (Sternberg,

1966), which measuresthe subject’s speed of scanning his short-term memory

for information,correlates significantly negatively with IQ. In this test, the

subject is showna series of between twoto seven digits or letters (termed the
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“positive set”) for several seconds. Then, a single “probe”digit is presented.
In a random halfofthetrials, the probe digit is a memberofthe positive set,
and the subject is required to respond as quickly as possible to the probedigit
by pressing either a “yes” or a “no” button to indicate whetherthe probe was
or was not a memberofthe positive set. (i) Long-term memory RT, as inthe
Posner LTM paradigm (Posner, 1969; Posner, Boies, Eichelman, & Taylor,
1969) correlates significantly negatively with IQ. This is a measureofthe time
it takes the subject to access a highly overlearned item of information stored
in his or her LTM. This procedureis based on the comparison of the subject’s
discriminative RTsto pairs of stimuli which are the sameordifferent, either
physically or semantically (Hunt, 1976). Similar results have been found with
children (Keating & Bobbitt 1978). (j) Inspection time (Nettelbeck & Lally,
1976) is negatively and significantly correlated with IQ. In this test, the timeis
measured whichis required for a visual stimulus to be encodedin sufficient
detail to permit discriminative judgment easy enough with sufficient time
available to allow of no errors. By means of a tachistoscope, the subject is
presented with a brief exposure of two vertical lines of markedly different
length, followed by a backward masking stimulus. The subject is then re-
quired to report whether the long line appeared on the right or theleft, the po-
sition varying randomly fromtrial to trial. Inspection time(IT)is the dura-
tion of stimulus exposure at which the subject’s judgment is correct on at
least 19 out of 20 trials. Positive results on this test, which can also be given in
an auditory form, have been reported by Brand and Deary (1982). (k) Most
recently, there has been added Eysenck’s “odd-man-out” paradigm,in which

the subject reacts to the one of 3 simultaneously illuminated lights on the

Jensen apparatus whichis farthest removed from the other two (Frearson &

Eysenck, 1986). This paradigm gives correlations in excess of — .60 with IQ

for random samplesofthe population, and shrunkenRsofa similar size even

for range-restricted university student populations (Jensen, personal com-

munication, 1986).

Jensen (1982a) has used the search model proposed by Hick, which also

forms a fundamental part of the Eysenck-Furneaux model, as a possible

mechanism that could account for the main features of the RT data, as well

as for individual differences in these features. Figure 7 shows the dichotomiz-

ing or binary resolution of uncertainty, as measured in bits. The » choice

alternatives in the physical stimulus array can be thoughtof as being iso-

morphically represented in the neural network of the cerebral cortex. The

dots in Figure 7 represent focal points or nodesof excitation which will fire
when a critical level of stimulation is reached. The number of aroused or
prime nodes of the RT task corresponds with the numberofalternatives in
the array of reaction stimuli.

Jensen hypothesizes that the level of excitation at each node oscillates, so

that half of the time the nodeis refractory. Above-threshhold stimulation of
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Choices

 

FIGURE 7. Hierarchical binary tree as used in Jensen’s oscillation theory. (Jensen,

1982a).

a node at any givenlevel of bits is transmitted downwards through the chain

of nodes to the final common path for response. For example, a stimulus

which contains only one elementofeight possible alternatives will excite one

of the eight nodes in the top row ofthe figure to discharge, and the discharge

will be transmitted to the final commonpath bythe three intervening nodes,

at the levels of 2, 1, and 0 bits. Whenthe stimulusis one of four alternatives,

the excitation would be transmitted through only two intervening nodes, etc.

The amountof time taken to respondto the stimulus over and abovetheir-

reducible minimum RT, which is attributable to peripheral sensory and

motor-mechanisms, will dependessentially on two factors: (a) the number of

levels in the chain through whichthe excitation must be conducted, and (b)

the average period ofoscillation of the transmitting nodes. Excitation, of

course, is not transmitted by a refractory node. Volleys of stimulation must

persist until the node is excitable. The refractory phase of the oscillation at

the nodeis the chief source of time delays in the system, and individual differ-

ences in the rate of oscillation would cause individual differences in RT (but

presumably not in MT). Oscillation would also causevariability in RT from

trial to trial, because the onset of the stimulus is random with respect to the

refractory and excited phasesof the oscillation, and Jensen assumesthat the

phaseofoscillation of a node at any pointin the chain is random with respect

to the phase of any other mode. Stimulation of a node at one level thus may

or maynotbe delayed bythe phaseofoscillation of every other node in the

chain. The theory is described in muchgreater detail in Jensen (1982a), to

which the readeris referred.

There are certain obvious physiological difficulties with this theory. Re-

fractoriness in the CNS is normally regarded as the function of previous exci-

tation, which produces the refractory phase. However, time intervals be-

tween onestimulus and anotherare so long that there is no question ofprevi-

ous neural currents causing refractoriness to subsequent ones. One would
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have to hypothesize a rather unphysiological picture of refractory phases
occurring on a random basis, withoutreferenceto previous stimulation. This
does not seem reasonable. In addition, there is no direct evidence for the
model suggested by Jensen, and it would hardly accountfor such correlations
between movementtimeandintelligence as have been observed. These objec-
tions do not rule out the possibility that the model may have explanatory
value, but they do cause difficulties in regarding the model as being physio-
logical in a meaningfulsense.

CRITICISM OF THE JENSEN MODEL

Jensen’s work has beencriticized in detail by Longstreth (1984) and Carroll
(1986), and manyofthecriticisms also apply to Jensen’s predecessors, whose
workhe has summarized.Thefirst three criticisms made by Longstreth relate
to apparatus and procedures, and concern ordereffects, visual attention ef-
fects, and response bias effects. Order effects arise because set size is con-
foundedwith orderoftrials; in other words, single RTs precede 2-choice RTs
which in turn are followed by 4-choice RTs and 8-choice RTs. If there are
practice effects, then clearly this would reduce the expected reaction time on
later trials, which would be confoundedwith set size. Jensen has repeatedly
stated that there is no evidence of learning in his work, but studies such as
those of Williams, Pottinger, and Shapcott (1985), as well as our own
(Barrett, Eysenck and Lucking, 1986) do show that learning takesplace, both
for RT and MT.Longstreth (1984) also reports an experiment to demonstrate
practice effects.

Visual attention effects relate to displacements madepossible by the spa-
tial layout of Jensen’s apparatus, which would qualify as a possibly source of
RT variation. Longstreth maintains that magnitudeofretinal displacementis
correlated with set size using Jensen’s apparatus, and indeedit is not easy to
find a way to modify the Jensen task to get aroundthis problem.It may be
that the stimuluslights are bright enough to producenoretinal displacement
effect, but there is no direct evidence for such a suggestion, and there is much
evidence for the retinal displacementeffect.
The third criticism, that relating to responsebias, is based on thefact that

the response to each stimulusis not only different, but that someof the re-
sponses may require more time for programmingorpreparation than others:
e.g., a left-moving response may take longer than a right-moving response.
Longstreth reports an experiment which suggests that response bias may bea
real problem with Jensen’s apparatus. These three objections are no doubt
well taken from the point of view of the experimentalist, but it is doubtful
whether they by themselves would suffice to throw any doubt ontherelation-
ship between IQ and reaction time as such. They do throw some doubton the
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precise data on slope correlations and increasing correlations with IQ when

the numberofitemsin the stimulusarrayis increased, and to these points we

must turn next.

Longstreth and Carroll both argue, on the basis of a detailed examination

of Jensen’s own data, that the reported gradients of RT acrossset size ob-

tained from diverse groups differing widely in mean IQ as well as on a wide

variety of other factors “contradict the asserted negative correlations as

much as they support it” (Longstreth, 1984,p. 153). Also queriedis the RT-

1Q-complexity relationship, a point also raised by Nettelbeck and Kirby

(1983). They show that, when normal subjects only are considered,i.e., when

the retarded groups used by them and omitted, correlations between choice

RTand IQ show nohintoflarger correlations with larger set size. Concern-

ing Jensen’s own data, Longstreth concludes that “when groups are examined

separately, there is simply no supporting evidence for the claim” (p. 154).

Longstreth and Carroll make many other objections to Jensen’s work,

such as the sampling used. Altogether, sampling has been a weak point in the

work done by most of the experimenters working in this field. Many have

used rangerestricted samples, such as university students, or else they have

used samples unduly extended in range, i.e., including retardates. Apart

from the possibility that retardates may present qualitative differences from

nonretarded subjects, their inclusion requires correction for range effects

just as much as does the concentration on university students alone. Such

corrections should always be included, whether they increase the observed

correlations (as with the student samples), or whether they decreaseit (as in

samples with retardates included). Quite generally, one would advocate the

use of normal samples having a mean and standard deviation similar to the

standardization sample of the IQ test used. Jensen (1982a, b) prefers the use

of contrasting groups, e.g., students versus nonstudents,or bright, average,

and dull children, but this paradigm, while it gives us information onthesig-

nificance of the differences observed, does not enable us to form an opinion

on the degree of relationship observed.

It should be noted that Jensen has put forward a very convincingreply to

the criticisms made, particularly by Longstreth (Jensen & Vernon, 1986).

This reply contains numerousanalyses of data collected over the years, and

makes good manydeficits of previous reporting.

Similar problems havearisenin relation to inspection time andits relation

to intelligence (Irwin, 1984). While earlier workers have claimed very high

correlations (e.g., the Adelaide group represented by Lally & Nettelbeck,

1977, and Nettelbeck & Lally, 1976, and the Edinburgh group, represented

by Brand & Deary, 1982), Irwin (1984), using 50 children of normalIQ range,

only found low and sometimesinsignificant correlations with verbal and

nonverbalintelligence. He criticizes the smallness of the groups tested by the

Edinburgh experimenters, the inclusion of retardates in the Adelaide
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samples, and the risky practice of estimating inspection time by extrapola-
tion. It is clearly important to study the task-relevant parameters in order to
discover whichare the best to choose for obtaining optimumcorrelations be-
tween IT and IQ.

A recent symposium ofthe International Society for the Study of Individ-
ual Differences consideredthesituation as far as the relation between IT and
IQ is concerned, and many new data were reported which strengthened con-
siderably the claims of IT to be considered a serious contender for objective
IQ measurement (Brebner & Nettelbeck, 1986). These data are too numerous
to be discussed here, but they leavelittle doubt that a substantial correlation
exists between the two variables (see Chapter9, this volume.)

RECENT INVESTIGATIONS OF THE RT-IQ RELATION

Wewill now turn to the task of looking at the most recent and best planned
investigations to see to what extent they bear out Jensen’s hypotheses and to
what extent they contradict his findings. This will also give us the opportu-
nity of estimating the actual size of correlations between RT and IQ to be ob-
served when adequate methodologyis being used on reasonable samples. The
literature prior to these studies has been adequately surveyed by Jensen
(1982a, b) and Eysenck (1986), and wewill not refer to it except when occa-
sion demands.

Asa beginning, consider the study by Jensen and Munro (1979), which
may be used to comparethe replicability of data in this field, and as a kind of
base line with which to compareother investigations. Using a sampleof 39
schoolgirls, all of similar age, who had been given the Raven’s Standard Pro-
gressive Matrices, Jensen and Munrofoundcorrelations of — .39 with total
RT and — .31 with variance. The correlation between Raven andtheregres-
sion of RT on bits was — .30, very similar to the correlations found by Bieger
and Roth. Uncorrected correlations between Raven and RT were — .26 for 0
bits, — .33 for 1 bit, — .41 for 2 bits, and — .35 for 3 bits. There is no evidence
for claimed increases with bits of information for choice reaction times — the
difference between 1 bit (— .33) and 3 bits (— .35) is obviously completely
insignificant.
For MT,the correlations are even higher, going up from — .38 to — 43,

— .36, and — .36as we go up to1, 2, and 3 bits of information. (When correc-
tion is madefor attenuation, these figures all reach the middle 40s, and one
even goes up into the middle 50s).

Clearly, simple reaction time and movementtimeis about as good a meas-
ure of intelligenceasis the regression of RT on bits, which meansthat neither
is “good” or accounted for more than 10%ofthe variance. Correlations do
not increase as we go from 1 to 2 to 3 bits of information, but the correlation
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with IQ of both RT and MT nowbecomesreasonable, going up into the 40s.

Taking RT and MTtogether, the shrunken multiple R = .45, whichis not

very different from the median correlation between the Raven and the WISC

(Sattler, 1974, p. 155). In other words, the Raven correlates much the same

with the RT and the MT measuresin their study as with other standardtests

of intelligence reported in the literature. The majorstress in this is on choice

RT, regardless of numberof bits involved, rather than on Hick’s regression.

Smith and Stanley (1983) reported on a well-chosen sample of 137 12-year-

old children with IQs ranging from 59 to 142. They use several measures of

intelligence which giverise to a g factor as well as a spatial and a verbalfac-

tor. Correlations with g were higher than those with S or V, with the 8-choice

RT and SDgiving higher correlation than the 4-choice or the 2-choice para-

digms. The correlations were — .33 and — .41, and that with the slope was

— .28. Inspection time did not show any significant kind of correlation.

Combining the 8-choice reaction time and standard deviation data gives a

multiple R of .44 with g.

Smith and Stanley report someinteresting data on thetest-retest correla-

tion over 1 year for the RT measures on 52 subjects from this sample. For

SD8, RT8, and b, the slope constant, the values were .48, .52, and .35, re-

spectively. Correcting for attenuation between g and SDRTand RTRIraises

the values to about — .60. As the authors remark,“the results . . . add tothe

picture that is emerging of commonvariance between measured intelligence

and RT measuretasks requiring low cognitive involvement . . . . While the

measure b with its identifiable theoretical basis as an intelligence measure,

does correlate moderately, once again, simple measures of RT from the

higher choice task show morepromise,in this study, and are someofthebet-

ter measures in Jensen and Munro (1979)” (Smith & Stanley, 1983, p. 366).

Nettelbeck and Kirby (1983) reported new data from a sample of 182

adults, and a reanalysis of data involving 48 adults from previously published

studies. They found by multiple regression analysis that measures of timed

performance accounted for as much as 25% of IQ variance in the normal

population, but that the inclusion of borderline and mildly retarded subjects

resulted in muchhighercorrelation coefficients because of the markedly less

efficient performance of these personsin tasks of this kind. “This outcome

raised questions aboutthe validity of combining data from retarded and non-

retarded subjects” (p. 39). The multiple R for IQ and the eight timed per-

formance variables used in this study was .83 for a normally distributed

sample, including subjects with IQs below 85 and above 117, which wasre-

duced to .57 by excluding the former.

With respect to inspection time, Nettelbeck and Kirby cometo an opposite

conclusion to that of Smith and Stanley (1983). They maintain that “the in-

spection time measure, which is designed to reducecriterial influence is per-

haps the most promisingsinceit has consistently indicated a negative associa-
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tion and has achievedstatistical significance in the greatest number of
instances” (p. 50). Nettelbeck and Kirby also present some evidencethat with
larger numbers of choices, differential Strategies may affect the outcome,
€.g., some subjects making a movementafter detecting only the presence of a
signal, but then delaying movementso as to permit a further decision during
movementabout whichalternative was involved.

In a study by Carlson and Jensen (1982), 20 9th-grade girls were tested,
using the Raventest, as well as reading comprehension and performance on
the California test of basic skills as measures of intellect. Mathematics and
English grades werealso correlated with RT and MT. The observedcorrela-
tions were consistently higher in this study than in the Jensen and Munro one,
going from — .42 for 1 bit to — .60 for 2 bits, and to — .58 for 3 bits. These
values are for RT; for MT,they are — .40, — .48, and — .31. Corrected for at-
tenuation, the values are, of course, much higher, going up to — .89 for RT,
and — .74 for MT.Slope data, by contrast, are even lower than for Jensen
and Munro,being quite insignificant (— .20). Correlations with variability,
on the other hand,are higher than for Jensen and Munro, both for RT and
MT,equalling — .71 and — .64, respectively.

Correlations with reading comprehension arealso quite respectable, ran-
ging up to — .60 for RT and up to — .42 for MT.It must of course be remem-
bered that the data are taken on 20 subjects only, so that standard errors are
quite high.

Oneof the most thorough studies on the relationship between IQ and RT

was published recently by P. A. Vernon (1983). He used 100 university stu-

dents who weregiven five measures of speed orefficiency of cognitive pro-

cessing, and the Wechsler and Ravenscales as measures of IQ. The speed

measures were, respectively: (a) Inspection time(IT), (b) The Sternberg STM

scanning task, (c) The Posner LTM informationretrieval tasks, (d) Aneffi-

ciency of STM storing and processing task, which is essentially a combina-

tion of the Sternberg and the Posnertasks, and (e) Simple and choice reaction

times. The matrix of correlations between these speed of processing tests was

calculated and factor analyzed,giving rise to a strongfirst principal factor.

Subtests of the Wechsler were intercorrelated with each other and with the

Raven scores, and thefirst factor extracted. To relate IQ with speed ofpro-

cessing, subject’s full-scale WAIS IQ scores were regressed on their meanre-

action times and intraindividual SDs on the speed of processing tests. Seven

predictor variables produced a maximum shrunken R with IQ of .46. Correc-
tion for attenuation dueto the restricted range of IQ of the sample gave a cor-
rected R of .67, which reflects more accurately the correlation that could be
expected to be found in the general population. Inspection time scores did
not add significantly to the multiple R, and a zero-order correlation with IQ
wasonly .10; it was the only speed-of-processing variable that correlated pos-
itively with IQ. IT correlated negatively or nonsignificantly with all other re-



46  EYSENCK

action times, and did not load to any appreciable extent on the first factor ex-

tracted from their intercorrelations.

Subjects’ intraindividual variability had about the same degree of associa-

tion with IQ as did their reaction times. The results of the factorial study

showed that whatever general intelligence and reaction times have in com-

mon cannotbe attributed to their shared verbal and numerical content, nor

solely or even largely to the facts that parts of the WAISare timed. Subjects

obtained very low errorrates on all the reaction timetests, indicating thatit is

not the test difficulty per se that accounts for the relationship. Vernon

concludes:

Rather,it is the g factor commontoall the psychometric variables that accounts

for the bulk of the relationship between IQ andreaction time. Further, given

the degreeofthis relationship, it appears that a moderately large part of the var-

iance in g is attributable to variance in speed andefficiency of execution of a

small numberofbasic cognitive processes.If this is the case,it is contrary to the

notion that IQ tests measurelittle more than the knowledge an individual has

acquired, the problem-solving strategies he has developed, and the opportuni-

ties he has had to learn these. . . In terms of speed of processing . . . it is pro-

posed that the individual with a larger knowledge base andstrategy base has ac-

quired these as a result of his or her basic information-processing capability.

Over a period of time—theyears of formal education, for example — faster cog-

nitive processing may allow more information to be acquired. (p. 69)

Carlson, Jensen, and Widaman (1983) studied correlations between reac-

tion time, Raven’s Matrices scores, reading scores, academic achievement,

and an attention test on 105 7th-grade children. Correlations were low

throughout, being higher with the variability of RT and MT than with RT

and MTthemselves. Correlations were higher with the reading scores than

with the Ravenscores, and the attention test correlated significantly with RT

and SD. RTslope correlated effectively zero with all the variables in ques-

tion. It is not clear why,in this study, correlations are lower thanin the others

consideredsofar.
Tworecent studies by Paul (1984) and Ananda (1985) used rather novel

speed-of-information processing tests. Paul employed the semantic verifica-

tion test, which is based on grammatical transformations; he also used

straightforward RTtests and the Posner paradigm,as well as the advanced

Raven Progressive Matrices, on 50 University students. Paul concludedthat:

Theresults of the different types of multiple regression analyses provide consid-

erable support for the hypothesis that the speed with which individuals can per-

form different cognitive processes is highly related to their intelligence.

Conservatively, one could say that RT can explain approximately 20%, and

intraindividual variability accounts for approximately 25% of the variance, in
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subjects’ general intelligence. One should remember also that the present
sample was extremely homogeneousin regardsto intelligence and that in the
population in general the percentage of explained variance would no doubt be
considerably larger. It seems possible to conclude that the speed and efficiency
with which individuals can execute basic cognitive operations like those meas-
ured in this study will determine to a large extent how well they will perform in
tests of mentalability. (p. 70)

Ananda (1985) used 76 subjects, aged 51 to 87, who were given a vocabu-
lary test, a reasoningtest, and several speed-of-information processing tasks.
Correlation and multiple regression analyses were used to investigate the re-
lationship between psychometric intelligence and speed-of-information
processing. Multiple regression analysis of intelligence on various informa-
tion processing components produced a maximum shrunkenR of.68. “It was
concluded that speed-of-information processing and psychometricabilities
are highly related. Indeed, the present findings lend support to theories that
link speed of mental processing to the broader and more complex intellectual
abilities measured by conventional psychometric tests” (p. 2).

It is important to ask whether these RT variables relate to the central core
of intelligence, as measured, e.g., by the first or general factor extracted
from the intercorrelations of Wechsler subtests. Hemmelgarn and Kehle
(1984) found,in a group of59intellectually superior elementary school chil-
dren, that the 12 subtests of the WISC-R werecorrelated negatively with
Hick’s slope to the degree that the subtests were loaded on the g factor of the
WISC-Rbattery. They correlated individual differences in Hick’s slope with
scores on each of the 12 WISC-Rsubtests,partialling out chronological age.
The profile of these 12 correlations shows a rank-ordercorrelation of 0.83
with a profile of the 12 subtests’ g loadings.

It is also important to note that RT does not correlate more highly with
timedthan with untimed IQ tests (Vernon & Kantor,1986; Vernon, Nador, &
Kantor, 1985). This important finding is in agreement with the outcome of
the speed-power debate already mentioned, butit is nevertheless interesting
to note that the commonsense notion of RT speed predicting scores on speed
tests better than scores on powertests is not borne out by the results of an ac-
tual experiment.

Another paper concerned with the relationship between RT and IQ con-
tains someanalyses of data originating in the Air Force Aviation Psychology
Programme of World War Two (Guilford, 1947). In the appendix of the
volume on paper-and-pencil tests of the aviation psychology programmere-
ports, there is a 65-variable correlation matrix, composed ofthe classifica-
tion test battery and 40-odd research tests. From this matrix, R. L. Thorn-
dike (1987, in press) designatedsix 8-test batteries, composed of the research
tests in the order in which they appeared. The remaining 17 tests, all members
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of the classification test battery, were inserted into each ofthe six batteries,

one test at atime, and the resulting 9-test batteries were factor analyzed, and

the g-loadings for each test and each battery calculated. The study demon-

strated the stability of g-loadings when

a

giventest is embeddedin the context

of different batteries, g-loadings across batteries correlating with a median

value of 0.82, and demonstratingthat there is a good dealof stability of load-

ings in different batteries.

Ourinterest here is in test 65, which is a discriminant reaction timetest.

This test had loadings on thesix batteries with whichit was factor analyzed of

52, .55, .61, .59, .60, and .61, averaging .58. This was the secondhighest fac-

tor loadingofall the 17 tests, being exceeded only marginally by a spatialori-

entation test which has a meang-loadingof .60. Factor loadings of the choice

reaction time test exceeded those for general information, arithmetic reason-

ing, numberoperations, and reading comprehension,all of which are known

to be good measuresof g. This study thus leaves little doubt aboutthe inde-

pendence ofg-loadingsofthe specific battery used, or the high g-loading of

discriminant reaction time.

PROBLEMS AND CONTRADICTIONS

Barrett, Eysenck, and Lucking (1986) used two samples of adult subjects of

reasonably averageintelligence, containing respectively 40 and 46 subjects,

who were administered the WAISand the Jensen-type RT test. Both groups

showed negative correlations between IQ on the one hand, and RT and

SDRT,on the other, confirming earlier work. On the other hand, there was

no evidence of correlation between the Hick slope and IQ, and the correla-

tion between IQ and RT or SDRTdid notincrease from | to 3 bits of infor-

mation. In these respects, the study gives results similar to those reported by

others. The studyis of interest particularly in that it was found that the Hick

paradigm did not apply to some 20%of subjects in the samples tested, and

that correlations with IQ were significantly increased when they were calcula-

ted only on subjects conforming to the Hick Law.

This suggests a possible reason for differences in results obtained by differ-

ent investigators; it seems, to judge from published material, that the number

of subjects not obeying Hick’s law may differ from one investigation to an-

other. Jensen has reported that only very few subjectsfall into this category,

but Amelang (1985) found that Hick’s law did not apply to the majority ofhis

subjects. It is not known why some should disobey this law, butit is quite

clear from the Barrett, Eysenck, and Lucking study that the reasons are not

related to personality (which was measured)or to intelligence. It is clearly an

urgent and important task to discover in what way subjects who do or do not

obey Hick’s law differ, and the reasons why these differences exist.
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Jenkinson (1983) investigated the question of whether , as Jensen (1978)
proposed, the speed of basic cognitive processes is fundamentalto a general
factor of intelligence which correspondsto Cattell’s (1971; Horn, 1972) fac-
tor of fluid intelligence, or whether, as Hunt, Lunneborg, and Lewis (1975)
found, speed of information processing is related to verbal ability as meas-
ured by tests of knowledge or hidden meanings, syntactic rules, and semantic
relations which operationally define crystalized intelligence. Sixty 6th-grade
children completed measures of fluid and crystalized ability, and three RT
tasks; correlations were foundin the expected direction, but these did notfa-
vor either fluid or crystalized intelligence, suggesting that the “Anlage” func-
tions (Horn, 1968) represented by speed of cognitive processing underlie
fluid and crystalized ability equally (Horn, 1968).
Another problem which hasbeset investigators in this field has been the

problem of mental retardation. P. A. Vernon (1981) obtained scores on Ra-
ven’s progressive matrices and the Figure Copying Test, as well as simple and
choice reaction time scores from 46 mentally retarded adults. Correlations
with the Raven test showed noincrease with larger stimulus arrays; quite on
the contrary. Going from 0 to 3 bits of information, correlations were — .25 ;
— .27, — .31, and — .06. Slope of RT showed highest correlations with Raven
of —.35. This study also comparedresults from this mildly retarded sample
with normal, superior, and severely retarded subjects, and found the ex-
pected differences.

A more analytic study has been reported by Todman and Gibb (1985).
They used a version of Sternberg’s memory scanning task on 32 subjects,
aged around 14 years, divided into IQ groupsdescribed as high, average, low,
and mentally retarded. Interest was both in the slope of the regression line
representing rate of scanning of the memoryset, and the intercept of there-
gression line, taken to represent the duration of encoding of the probe item
together with time takento select and execute a response. Seymour and Moir
(1980) had used these two measures on 36 children assigned tosix groups of
six subjects on the basis oftheir intelligence test scores. Correlating individ-
ual meanreaction times with intelligence test scores, they found acorrelation
of — .47 with positive RT and — .53 for negative RT. As they point out: “The
findings are consistent with Eysenck’s contention that individuals of varying
intelligence will differ in the time they take to perform simple tasks whichin-
volve an elementof choice” (p. 57). Intercept, too, was correlated with intel-
ligence with values just below — .40. The slope parameter, however, was not
found to besignificantly related to intelligence. Seymour and Moir found
that a few subjects in their sample produced negative valuesfor the slope pa-
rameter, and also gave extremely high intercept values, suggesting the exist-
ence of a general tendency to trade a high intercept for a shallow slope, or
vice versa. (There wasa high negative correlation between these two values.)
This very much complicates the interpretation of the data.
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The argument of the Todman and Gibb studyis in part based on the

Seymour and Moir study, and also on others (Horning, Morim, & Konick,

1979; Harris & Fleer, 1974; Silverman, 1974; Maisto & Baumeister, 1975)

which showed that, when IQ is held constant while chronological age and

mental age are covaried, the general finding has been a developmental trend

towards smaller intercept values, with no comparable effect of mental matu-

rity on slope values. In the Harris and Fleer (1974) study, however, compar-

ing retarded groups with normal children matched oneither chronological or

mental age, an effect of IQ on the slope as well as on the intercept parameter

was found. Similar findings have been reported by Dugasand Kellas (1974)

and Maisto and Jerome (1977).

As Todman and Gibbsay:

Taken together these results suggest a general developmental trend towardsin-

creased speed in one or moreofthe processes contributing to intercept values

and, amongretarded individuals, a speed decrement in the comparison (mem-

ory search) stage, which is otherwise unrelated to mental maturity over a broad

age range.It appears, then, that speed of processing in the mostdistinctly “cen-

tral” componentof the Sternberg task, as indexed by the slope parameter, does

not predict psychometric intelligence over the non-retarded IQ range. Onthe

other hand, both the intercept parameter in the Sternberg task and the inspec-

tion time measure, each of which has been interpreted asreflecting relatively

“peripheral” operations(i.e., perceptual encoding and,in the case of the inter-

cept parameter, responseinitiation), appeared to be moderate to goodpredict-

ors ofintelligence over the IQ range for which the tasks seemed usable. (p. 50)

In the Todman and Gibbstudy, the slope parameterdid not differ between

the three non-retarded groups. Contrary to expectation, slope values for the

retarded group also did not differ significantly from those of the non-

retarded groups. The correlation between intercepts and IQ overall subjects

washighly significant (r = —.77), with a correlation only slightly lower (r =

— ,62) for the three nonretarded groups. Slope andintercept scores were neg-

atively correlated, but, as Valentine, Wilding, and Mohindra (1984) have

shown, substantial negative correlations between slopes and intercepts are

predictable on purely statistical grounds, and their predicted and observed

correlations are very similar.

Todmanand Gibb conclude that their results, taken in conjunction with

rather similar ones published by Hulme and Turnbull (1983), “suggested that

inspection time and intercept measuresare differentially predictive of psy-

chometric intelligence at differentlevels of ability. . . . Whatever processing

characteristics underlie differences in the psychometrically sampled intellec-

tual performancesof individuals may not be the samein different regions of

the IQ scale, and processing componentsthatarerelatively remote from stra-

tegic control functions seem amongtheleast likely to be critical across a
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broad ability range” (p. 56). They also arguethat, although encodingandre-

sponseinitiation are the componentsthat have generally been assigned to the

intercept parameter, it could also incorporate a strategic control component

representing time for resource allocation and preparation (see Nettelbeck &

Breuer, 1981). However that mightbe,it is clear that no study involving both

normal and retarded subjects is acceptable for a study of the interrelationship

between RT and IQ,unlessit is accompanied and followed byspecific analy-

ses designed to throw light on the possible nonlinear relationships involved.

EVENT-RELATED POTENTIALS

A line of investigation which promises to be of considerable use in under-

standing theoretically and using practically the relationships betweenintelli-

gence andspeed of cognitive processingrelates to the use of evoked brain po-

tentials. The literature on this field is very large (Eysenck & Barrett, 1985),

andwill not here be reviewed. As already mentioned, the Erlangen Schoolat-

tempted to link their theories with event-related potentials, using measures

pioneeredin this respect by Ertl (1973) and Ertl and Schafer (1969). Unfortu-
nately, latencies and amplitudes of evoked responses do notcorrelate very
highly with IQ and alternative measures seem muchbetter than this for the
purpose. Jensen, Schafer, and Crinella (1981) wisely chose for their study an

EEG measure of “neural adaptability” (Schafer, 1979, 1982; Schafer &

Marcus, 1973). Neural adaptability (NA) is posited as a cause of a tendency

in humansubjects to produce cortical evoked potentials with large amplitude

to unexpected inputs, and small amplitude to inputs whosenatureor timings

a person can foresee. The difference in amplitude to these two kinds of

stimuli is predicted to correlate with IQ, being larger in brighter subjects.

Jensen, Shafer, and Crinella (1981) employed 54 severely retarded adults
for their study, using a battery of 15 psychometric tests as well as RT, MT,
and NAvariables. On this group, they obtained a shrunken multiple R of .64
with psychometric g, despite the rather narrow rangeof IQ scores involved.
Individually, the IQ correlated with the RT + MT composite — .46, and neu-
ral adaptability correlated with g + .31. Neural adaptability correlated insig-
nificantly with RT and MT,butsignificantly negatively with SDRT and
SDMT, as well as with the RT and MT composite. Clearly, this is a very
promising combination of scores to predict individual IQ, and perhapsex-
plain it by logical arguments.

Oneparticularly interesting finding in this study was that the severely re-
tarded group failed to obey Hick’s law; there was no further increase in RT
beyond 1 bit of information. Jensen, Schafer, and Crinella speculate that
Hick’s law is only approximately true for any group. The true function
relating RT to bits of information they considered to be more probablya par-
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abolic curve, tending towards an asymptote at the point of informational

overload for a given subject. This, they consider, is probably between 1 and 2

bits of information for the severely retarded, and close to 7 bits for average

adults. The hypothesis is certainly a tenable one, but it would not explain the

findings reported by Barrett, Eysenck, and Lucking (1986) showing a break-

downin Hick’s law even for normal adults in a large numberofcases.

The Schafer neural adaptability paradigm has shown highcorrelations

with normal adult subjects, but so have other paradigmsquite different from

his, e.g., that proposed by A. E. Hendrickson (1982), and given an empirical

basis by D. E. Hendrickson (1982). This model, which has been worked out

in great detail along biological lines, explains information processing

througha logically related chain of pulse trains which transmit the informa-

tion. Assumethat, for each individual, there is a specific probability R that

just one of the synaptic transmissions involved will succeed in correctly

transmitting the pulse train in question. The probability of failure is, of

course, 1-R. If we assume that each synapse has the same value of R, and that

the probabilities are independent, the probability that a chain ofNevents will

succeed is RN. The Hendricksonssuggest that R is the underlying biological

basis ofintelligence, so that the larger the numberoferrors (1-R), the lower

will be the IQ of the subject. They have shownthat evoked potential mea-

sures derived on the basis of this show a very high correlation of .83 with the

total Wechsler scale, but this correlation, of course, does not necessarily

prove the underlying theory to be correct. The theory has been introduced,

not because it is necessarily true, but because it suggests that the observed

correlation between IQ and speed of cognitive processing may have a quite

different biological foundation from one that would normally be associated

with speed, i.e., such things as speed of neural conduction, or transmission

across synapses, etc. It is an alternative theory to Jensen’s hypothesis of “os-

cillation,” and explains many features of the paradigms we have considered.

It is well known that informationis never transmitted singly and through a

single channel; what normally occurs is multiple transmission throughsev-

eral channels. Accordingly, we must postulate some kind of comparator

(Sokolov, 1963). This comparator would compare the incoming messages

with each other, and issue the commandtoreactif the messages agreed. If,

now,during transmission of the message errors occur, then the resulting final

messages would not agree and the comparator would have to wait beforegiv-

ing the instruction to initiate action until a larger number of messages has

been received, making certain that the correct percept had been identified.

This would inevitably delay reaction, and hence turn differencesin errors in

transmission into differences in speed of reaction. The theory is developed in

moredetail in Eysenck (1985), and will not here be developed in greater de-

tail. Note, however, that it explains both the longer reaction time for lower

IQ subjects, and also their greater variability. The theoryis still, of course,
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highly speculative, as is Jensen’s oscillation theory, but both suggest that un-
derlying differences in speed of reaction there may be more fundamental
physiological and biochemical brain processes related to the transmission of
information.

There are of course many different biological theories relating to intelli-
gence, ever since Spearman’s (1927) early notion of “energy,” and Thomson’s
(1948) notion of number of bonds. Both these notions are equally far re-
moved from beingtestable, or relating intelligence to existing knowledgeof
psychophysiology;in principle, at least, the notionsofoscillation and errors
in transmission are testable, and some predictions can be made from them
which have already been foundto beverifiable. However, obviously, thereis
a long waystill to go.

THE “ENERGY” THEORY OFINTELLIGENCE

Weiss (1982, 1984, 1986) has suggested, on the basis of a review of the litera-
ture, that there is now much evidencefor a biochemical analogue of Spear-
man’s “mental energy” hypothesis. Early work on sucha hypothesis wascited
by Zimmerman and Ross(1944), who reported that feeding of glutamic acid
to dull youngrats resulted in a considerable improvement in maze-learning
ability. Another group of workers, also at Columbia University, reported
beneficial effects on the performanceofrats in complex reasoning problems
(Albert & Warden, 1944). This work was extended to mentally retarded chil-
dren, with results which suggested that glutamic acid might increase their IQ
as measured by standard intelligence tests; however, notall investigations
have given favorableresults, as indicated in the review by Hughes and Zubek
(1956). Many animalexperiments, too, have given negative results, probably
because positive results have only been achieved with dull rats (and dull hu-
mans!), so that experiments using average or bright organismsarestrictly ir-
relevant to the theory.

These empirical data are supported by theoretical considerations. Zimmer-
man, Burgemeister, and Putnam (1949) have arguedthat the improvementin
learning ability might be due to the facilitatory effect of glutamic acid upon
certain metabolic processes underlying neural activity. Thus,it is known that
glutamic acid is important in the synthesis of acetylcholine, a chemical sub-
stance necessary for the production of variouselectrical changes appearing
during neural transmission. It has been foundthat the rate of acetylcholine
formation could be increased fourto five times by adding glutamicacid to di-
alyzed extracts in rat brain (Nachmansohn, John, & Walsh, 1943). In addi-
tion, Waelsch (1951) has shownthat the concentration of glutamic acid in the
brain is disproportionally high, as compared with the concentration of other
amino-acids, and is capable ofserving as a respiratory substrate in the brain
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in lieu of glucose. Finally, Sauri (1950), experimenting onrats, discovered

that the acid exerts its main effect on the cerebral cortex, loweringits thresh-

old of excitability.

All these results clearly point to the importance of glutamic acid incerebral

metabolism.Its effectiveness, in dull rats only, suggests that the cerebral me-

tabolism of dull rats is defective in some way, while that of average and

bright rats is normal, allowing glutamic acidto facilitate or improvethe de-

fective cerebral metabolism of the dull animals, while having no particular

effect on the normal metabolism of the bright ones. This suggestion is

strengthened by the fact that Himwich and Fazekas (1940), in acareful study

of tissue preparations from the brains of mentally retarded persons, were

able to show that these tissues were incapable of utilizing normal amounts of

oxygen and carbohydrates. In other words, the cerebral metabolism in these

mentally retarded patients was defective.

Morerecently, work alongsimilar lines has been taken up again, and given

very promising and importantresults. Thus, IQ has been foundto be corre-

lated with the activity of brain choline acetyltransferase to the extent of .81

(Perry et al., 1978), with brain acetylcholinesterase to the extent of .35

(Soininen et al., 1983), and erythrocyte glutathione peroxidaseto the extent

of .58 (Sinet, Lejenne, & Jerome, 1979). Cerebral glucose metabolism rates

have also been found correlated with IQ to the extent of about .60 by de Leon

et al. (1983), and Chaseet al. (1984). These studies, admittedly, were notin-

tendedto clarify the physiological background of normal intelligence, but to

throw light on the metabolic causes of premature senescence and cognitive

losses in Alzheimer’s disease, Down’s syndrome and Parkinson’s disease, and

normal aging (Mann, Yates, & Marcynink, 1984), and this disease may be

viewed as one tail of a continuousdistribution. Furthermore, these correla-

tions with IQ have also been confirmed in healthy comparison groups

(Soinine et al., 1984; de Leon et al., 1983, Chaseet al., 1984), and hence the

results must be regarded with respect.

Mutatis mutandis, the theory offered by Weissis not dissimilar to that of

Zimmerman already referred to. As Weiss (1986) points out, the brain

consumesglucose as a normally exclusive source of energy. Althoughthe hu-

man brain represents only 2% of body weight, its energy consumption is

about 20% of total energy requirement (Hoyer, 1982). Compared with the

high rate of utilization, the energy stores in the brain are almost negligible,

and the brain is consequently almost completely dependent on the continu-

ous replenishmentof its glucose supplies by the cerebral circulation (Reinis &

Goldman, 1982). Weiss goes on to arguethat it would defy most fundamental

laws of thermodynamicsif individual differences in brain power did not find

their counterparts in individual differences of brain energy metabolism. This

argumentis powerfully strengthened by the fact that two research groups(de

Leon et al., 1983; Chase et al., 1984) report significant correlations of around
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.60 between regional cerebral glucose metabolism rates and a numberof IQ
tests, including memory capacity and mental speed, in both the Alzheimer’s
and control groups (Chaseet al., 1984). By positron emission topographyof
radioactive fluorine, it becomes possible to quantify glucose metabolism in
milligrams per 100 gramsofbrain tissue per minute. Now,since both IQ and
glucose metabolism grades are far from perfectly reliably measured, these
correlations must be regarded as very high indeed, suggesting a strong degree
of dependenceofintelligence on cerebral glucose metabolism.

Weiss (1986) takes the argument a good deal further, but this is not the
right place to follow a complex biochemical argument,orto indicate possible
criticisms in detail. The small number of normal subjects tested, the un-
knownreliability of the biochemical assays, and the failure of the authors
mentioned to addressthe central issues of Weiss’s argument (understandable
because of their orientation towards medical problems of aging) combineto
makeit desirable for a new,large scale investigation to be carried out along
the samelines, but emphasizing properlarge samples of normal adults cover-
ing the range of IQ. However that maybe, the data are certainly impressive,
suggesting that glucose, glutamic acid, and other biochemical agents respon-
sible for the energy supply of the cortex, and connected with the production
of neurotransmitter substances, have

a

vital causal role to playin Intelligence
A, and maybethe ultimate source of that “mental energy” whichis the under-
lying biological substrate of Spearman’s g (general intelligence). It cannotat
the momentbe claimed that the search has ended with these tantalizing find-
ings, but it may be claimed thatit has not only begun,but has already made
possible the postulation of specific testable theories.

Anotherbiochemical feature which has beenrelated to mental retardation,
and in particular Alzheimer’s disease, Down’s syndrome,and the Parkinson-
dementia of Guam is chronic calcium deficiency (Abalan, 1984; Barlow,
Sylvester, & Dickerson, 1981). In the three areas mentioned above, the dis-
eases disappeared after access to calcium was increased (Gajdusek, 1985).
There is strong evidence that these diseases share an aetiology in terms of
mineral deficiency (Garruto et al., 1985), and Deary, Hendrickson, and
Burns(1986) have suggested a possible mechanism wherebytheprocessofde-
cline and dementia maybealleviated, and the normal process of aging and
the decline of intelligence retarded. This appears to be anotherline of re-
search into the causal biological factors determining differences in intelli-
gence which would be worth following up.

SUMMARY AND CONCLUSION

In attempting to come to someconclusions aboutthe results so far achieved,
we mustfirst ofall consider the great variability of results reported. Doesthis
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variability preclude any firm conclusions? The answer to this question is

probably no. Manystudies have been doneonrelatively few cases, and the

probable errors of a product-momentcorrelation are of course quite high for

small numbers. Let us consider a “true” correlation between RT and IQ of

— .40, andlet us assumethat the numberof cases involved is 25. Under those

conditions, 50% of correlations found in replicated samples would lie be-

tween —.51 and —.29, and half would lie outside these limits. In other

words, even differences as large as those between — .20 and — .60 would arise

by chance quite frequently. Thus, variability of results is built into the design

of the experiments by the small numbersofcases usually employed — andit

should be rememberedthat an N of25 is a good deallarger than the numbers

sometimes reported!

There are manyother reasonsfor variability, such as the use of different

IQ tests, the use of different RT measures (mean, median, or mode), derived

from varying numbersof observations, variously arranged and spaced, and

the use of many different types of samples of varying range, age, and sex

composition. It would be a miracle if with such a variety of conditionsresults

would show greater agreement than they do.

Wemust also consider that, in discussing results, it would not be useful to

use terms denoting the observedrelationships as large or small, impressive or

negligible, importantor irrelevant. The size of correlations should always be

seen in the context of expectations based on theory —if a correlation is ex-

pected to be in the neighborhood of —.40, then a correlation of — .20 would

be small, one of — .60 would belarge. If the expected correlation is around

— .80, then one of — .60 would be small! Furthermore, correlations should

never be compared unless corrected for range of ability; such corrections

should always be reported. Finally, from the theoretical point of view,it is

important that corrections for attenuation should be made,particularly in

view of the low test-retest reliability of RT measures. Such corrections, of

course, are not very relevantto the practical use of the test, but from the theo-

retical point of view they are all-important. After all, we are concerned with

the “true” relationship between IQ and RT; these relationships are seriously

underestimated if we use very unreliable measures ofeither or both.

Multiple Rs are reported by many authors, and it seems reasonable to com-

bine different measures, such as RTs, MTsandvariabilities. However, multi-

ple Rs, even if shrunk to avoid capitalizing on chance errors, are inherently

very unstable when based on small numbersof subjects, and may be quite

misleading. Measures should only be combined if both the measures used and

their weighting is determined beforehand, preferably on the basis of previ-

ously reported investigations. Otherwise, multiple Rs are probably not a

good guideto the “true” relations obtaining between variables.

Finally, we should look at the observed relationships in termsof the corre-

lations usually found betweenIQ tests. Clearly, it is unlikely that RT and 1Q
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measures would correlate more highly than IQ measures do with each other;
indeed, theory dictates that, because IQ measuresshare certain noncognitive
elements, they should correlate more highly together than any of them would
with an RT measure not influenced by these noncognitive factors. Using a
very rough estimate, we might say that IQ tests intercorrelate around .75
when they are relatively similar in structure, such as the Binet and the
Wechsler, but that the correlation drops to about .50 to .60 when they are
rather dissimilar, such as the Wechsler and the Raven. If RT measures encap-
sulate the biological essence of g, then we could expect observed correlations
on suitable samples, corrected for attenuation, to be around .5 to .6, no
higher. If they are higher than this, then the difference should not be larger
than twice the standarderrorofthe correlation itself; otherwise, the observed
correlation would be too high to be in accord with the theory. Equally, results
wouldnot be in accord with the theory if the correlation were more than two
or three standard deviations below that value.

Granted these boundary conditions, we find that, on the whole, results are
in good accord with theory, in that choice RT and MT measures, and
variabilities of these measures, correlate with IQ around .4, where no correc-
tion is made for attenuation, and between .5 and .6 when suchcorrections are
made. This is true also of such more complex measures as the Sternberg or
Posner paradigms. For IT, results are more divergent than for RT,but this
maybe dueto the fact that the experimental paradigmsused are much more
dissimilar. The low results reported by Irwin (1984) may be contrasted with
the high correlations reported by Raz, Willerman, Ingmundson, and Hanlon
(1983) and Raz and Willerman (1985). Irwin, using a visual inspection time
task for 50 children, concludedthatresults “do not supportearlier claims that
inspection timeis closely related to conventional measures of intelligence”
(p. 47). Raz et al. (1983) reported correlations for auditory IT (pioneered by
Deary, 1980) ranging from — .51 to —.74, and Raz and Willerman (1985)re-
ported values of —.58 to —.59. These values are much morein line with
those reported by Brand (1981; Brand & Deary, 1982). Even the values for
auditory inspection time quoted by Irwin (— .32 and —.23 for verbal and
nonverbalintelligence test respectively) are not significantly different from
those reported by Raz andhis colleagues, although thosefor visualIT arein-
deed very low.

Contrary to the expectations expressed by both Jensen and the Erlangen
School, neither the Hick slope northe increase in RT-IQ correlations with in-
crease in the numberofbits in the stimulus array can be said to have given
very high correlations. For the slope parameter correlations of — .30 may be
regardedas typical, and while there is an undoubted and markedincrease as
we go from simple to choice reaction time, increases from onetothreebits of
informationare not paralleled by any markedincreasein correlation between
RT and IQ. These disappointing findings may be related to the fact that
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Hick’s law is not obeyed by all subjects, and as many as 20% or more may

show widely differing regressions. When such subjects are removed,the re-

mainder show higherrelationships, but, of course, until and unless an expla-

nation is found for the departure from Hick’s law of the remaining subjects,

such an omission would bearbitrary and oflittle theoretical interest.

Doesthe fact that the correlation between simple reaction time andIQ is

not zero contradict our theory?It is true that simple reaction time according

to Hick implies zero bits of information, but that, of course,is a highly artifi-

cial way of looking at the situation. The subject is not getting any informa-

tion from thelighting up of the lamp asto whichtargetis going to belit, but

he or she doesreceive information about when the targetis beinglit. In other

words, even whenthereis only one light and no choice, some cognitive pro-

cessing hasto take place, representing the duration of encodingofthe stimu-

lus together with the time taken to decide on the execution of the response.

Admittedly, these cognitive processes are very rudimentary, and hence corre-

lations with IQ will be expected to be much lower than whenchoiceis in-

volved, but would not be likely to be reduced to zero.

If simple reaction time were qualitatively different from choice reaction

time, and carried no traces of cognitive processing, then one would expect

that taking the difference between simple and choice RT for a given person,

and correlating this difference with IQ, would increase correlations because

of the elimination of irrelevant material. Carrying out this process on the

data presented by Barrett, Eysenck, and Lucking (1986) showedthatcorrela-

tions were reduced rather than increased, thus demonstrating that if we

postulate cognitive processes in choice reaction time, we must also postulate

similar processes, if at a more rudimentarylevel, in simple reaction time

measurement.

On the whole, results are in reasonable agreement with the general theory

outlined at the beginning of this chapter. As shown in Figure 8, we may

equate Intelligence A (biological intelligence) with some such concept as

error-free transmission of information throughthe cortex.It is not suggested

that this is the only paradigm that fits the data, but at the momentwebelieve

it has more evidencein favorof it than various alternatives, such as Jensen’s

oscillation model. Differences in error-free transmission lead to differences

in IQ, mainly through the influence of error-free transmission on mental

speed. Error-checking and continuance are noncognitive variables which in-

fluence IQ, but do not influence error-free transmission; hence, IQ (Intelli-

gence C) is an impure measureofintelligence. More complex still than IQ is

Intelligence B (social intelligence), which comprises a number of cognitive ac-

tivities (reasoning, judgment, problem-solving, learning comprehension,use

of strategies, eduction of relations and correlates, etc.) which are largely in-

fluenced by biologicalintelligence differences, but which are also determined

in part by extraneousvariables such as personality, education, knowledge,
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FIGURE 8. Relation between biological and social intelligence, with tripartite division
of IQ as intermediary.

socio-economic status, etc. Such a model, at the moment, seemsin good ac-
cord with the facts, but it does, of course, need a greatdeal of detailed work-
ing out before it can be considered firmly established (Eysenck, 1986).
Can we regard a theory concentrating on speed of information processing

as having explanatory value for such a concept as “intelligence” which, ac-
cording to Spearman (1927), is essentially noegenetic, i.e., which produces
novel concepts and solutions? Work onartificial intelligence suggests that
this may be so (Winston, 1984; Lenat, 1977 » 1982). In some way,obviously,
this must indeed beso, as otherwise we would have to postulate some kind of
problem-solving homunculusin the brain, whichis all that most current theo-
ries of intelligence boil down to. Such a postulation would, of course, be
useless, but it cannot be said that very much progress has been made in
translating the simple processes of information processing into the creation
of novel solutions. If this really entails nothing but the eduction ofrelations
and correlates, then it should not prove too difficult to elaborate such a
theory.

I have venturedto suggest that we are faced with a revolution in the theory
and measurement ofintelligence (Eysenck, 1983). This revolution, in es-
sence, takes an important step further the theoretical foundations given to
the experimental study ofintelligence by Galton, Spearman, and Burt. Like
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all scientific revolutions, this one too confronts many anomalies, but it may

be hoped that these will be eliminated in time by the process of “normalsci-

ence,” i.e., the puzzle-solving application of the scientific method to specific

problems.It is also to be hopedthat there will be a closer contact between in-

vestigators interested in individual differences, and those who study reaction

time experimentally, and attempt to elaborate theoretical positions (Smith,

1968). The study of choice reaction time as a measureofintelligence has not

paid much heed to the work done by experimentalists; it seems likely that

only by doing so will we gain a better understanding of the way in which IQ

and RTare linked, and the fundamental biological factors which determine

speed of mental functioning.
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CHAPTER3

Elementary Cognitive
Correlates of G:

Progress and Prospects

Jerry S. Carlson and Keith F. Widaman
The University of California, Riverside

The study ofintelligence has occupied philosopherssince the time of the an-

cient Greeks andis one of the most widely researched areas in contemporary

psychology. However, despite the long history of interest in the construct,

there is no unified concept of whatintelligenceis; rather, several alternative,

though not necessarily mutually exclusive, theories compete. Theories ofin-

telligence range from practical, ecological approachesthat stress adaptation

to the environmentin which an individuallives, to statistically defined con-

ceptions derived from individuals’ performance on varietyoftests, to infor-

mation processing approaches, which generally employ reaction time para-

digms in which the dependentvariable is speed of response to stimuli with
differing cognitive demands. Each of these general approaches has several
variants that differ both theoretically and methodologically.

In the present chapter, we will have occasion to refer to measures we term
Galtonian and Spearmanian measures, becausethe types of measures resem-
ble those used by Galton and Spearman,respectively, in their early and im-
portant programsof research. Weuse the term Galtonian measures to refer
to measures such as reaction time, each observation of which is made on a
highly differentiated scale. Galton used measuressuch asreaction timeto dif-
ferent kinds of stimuli, various measuresof strength and perceptual acuity,
and so on,in his investigations of human capacities (Galton, 1885; see also
Johnson, McClearn, Yuen, Nagoshi, Ahern, & Cole, 1985). Most of Galton’s
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measureshad a very low cognitive loading, but yielded data on highlydiffer-

entiated quantitative scales.

Weuse the term Spearmanian measures, on the other hand,to refer to the

types of items typically found on psychometric tests of ability. Each such

item usually has only one correct answer and is scored in dichotomous

fashion. A highly quantitative scale, allowing precise representation of indi-

vidual differences, is obtainable only by summingacross a large number of

dichotomously-scored items. Because such items tend to have some cognitive

loading, the summaryscoreacross a collection of items tends to predict im-

portant educational and academic criteria, such as success in school, quite

well. Several historically important attempts to correlate performance on

Galtonian measures with performance on Spearmanian measuresled to nota-

ble, but disappointing results (Sharp, 1898-99; Wissler, 1901). However,

more recent work (Jensen 1982, 1985, 1986; Vernon, 1985) has reported con-

sistent, theoretically interesting patterns of correlation between the two types

of measures.

In this chapter, we will first outline several major approachesto the study

of intelligence, placing special emphasis on work donein the tradition of

Spearman and Galton. Second, wewill outline the major reaction time para-

digms that have been usedin correlational studies with psychometric mea-

sures of g, and summarize conclusionsthat we feel can be drawn from therel-

evantliterature. In reviewing these paradigms, wewill stress critical issues in-

volved in the search for explanations of the relationships between Galtonian

and Spearmanian measures. Third, we will present recent data from ourlab-

oratory that address several issues regarding observed correlations between

measures of intelligence and reaction time, concentrating on the Hick para-

digm. Fourth, andlastly, we will offer some suggestions for research that we

feel will be useful for further exploration of the practical and theoretical

meaning of the relationships between Spearmanian and Galtonian measures.

APPROACHESTO THE STUDYOF INTELLIGENCE

Ecological

The ecological approach to the studyofintelligence is set within the frame-

work of the naturalistic study of human behavior. Adherents of this ap-

proacharecritical of the classical psychometric perspective, which assumes

that intelligence is a trait possessed to a greater or lesser extent by individuals

and measurable in controlled and standardized assessmentsituations. The

study of limited relationships amongtest items that seem to have only periph-

eral usefulness in advancing our understanding of how intelligence develops

and is manifested in everydaylife situations is seen as potentially misleading,
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providing little information concerning how individuals interact with and
adapt to their environments (Berry, 1980; Charlesworth, 1979).

Thebelief that the organism actively constructs its world is a fundamental
epistemological assumption underlying theory and research guiding the eco-
logical approach to the study of the developmentofintelligence (Elkind,
1981; Reese & Overton, 1970; Overton, 1984). The epistemological implica-
tion of constructivism is the conception that knowledge, andits correlate, in-
telligence, are created throughinteractions of the individual with his or her
environment. Such individual-environmentinteractions begin with the activ-
ity of the individual, activity that is the sole avenue for the development of
mentalstructures that are functionally more adaptive to the environment and
its demands than previous forms of mental organization. The ecological re-
search agendaare motivated by the attemptto assess the content of thought
and the function of thought for individuals in their day-to-day interactions
with their world. The preceding research agenda imply a larger sphere ofre-
search and theory than do approaches which attempt to measure single or
multiple traits. They call for measurement approachesthat include natural-
istic observation as well as the adaptation of measurement techniques that
take into accountspecific factors of the groupsor individuals being tested. If
insufficient care is taken to assess the person’s fit to his or her environment,
assessed performance levels may be quite unrepresentative of the cognitive
competenceof the individual or the group. Exemplary studies within the eco-
logical approach are the work bycross-cultural psychologists such as Cole
and Scribner (1974), Berry (1985), and Dasen (1985). Also stressing the need
to ensure representativeness of assessed performance, and hence also within
the ecological approach, are researchers, such as Day, French, and Hall
(1985), Carlson and Wiedl (1980), and Arbitman-Smith, Haywood, and
Bransford (1984), who apply dynamic assessment techniquesto the study of
individual and groupdifferences.

Althoughthe ecological approach involves both theory and methodthat
appear to be at odds with the traditions of the classical psychometric ap-
proach, the bases for the two approaches may be moresimilar than is often
thought. For example, it was the work of Sir Francis Galton that gave pri-
mary impetusto the studyofintelligence in the modernera. Galton, consist-
ent with the views of his cousin Charles Darwin, was convincedthat the de-
velopmentofintelligence was the product of evolutionary processes and that
intelligence could be understoodfully only if one took a perspective apprecia-
tive of the view thatintelligence, and its application tolife situations, haspri-
mary adaptive and survivalvalue for the species. For Galton, intelligence can
only be understoodfully in the context of phylogenetic processes and devel-
opments. Furthermore, Galton’s (1869) classic work on the study of the En-
glish nobility, Hereditary Genius, was based on quasi-observational, histor-
ical methods.
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The work of Binet and Simon wasalso largely motivated by practical con-

cerns: those surroundingthe real, everyday problem of educating subnormal

and potentially subnormal children. The pragmatic concerns surrounding

the use of performance on ability measures to predict which children were

likely to profit from formal, public education were of great importance to

Binet and Simon.In fact, it was the prediction of school performance that

laid the basis for the claims of validity that Binet gave to the concept of

intelligence.
In a similar, though more encompassing manner, David Wechsler (1939,

1975), the author of the currently most widely used intelligence scales, has

emphasized the importance of viewing intelligence as primarily related to

practical, life-relevant concerns. Wechsler has remained consistent in his

view that intellence is “the aggregate or global capacity of the individual to

act purposefully, to think rationally, and to deal effectively with his environ-

ment” (Wechsler, 1939, p. 3). More recently, Wechsler (1975) has suggested

that abstract problem solving and the purely intellective aspects of intelli-

gence constitute only a partof thedefinition ofintelligence and intelligent be-

havior. Although the various Wechsler scales mayfall short of his guiding,

global definition of intelligence, the general views concerning intelligence

voiced by Wechsler are consistent with an approach that appreciatesthesig-

nificance of the ability of the individual to adapt to his or her environment.

Psychometric

The psychometric approach to the study ofintelligence is based largely on

studies utilizing correlational and factor analytic techniques. The goalof the

use of these statistical methods in the study ofintelligence is to analyze and

account for individual differences in patterns of response to tests that are

made upof items meeting certain theoretical and practical criteria. Theoreti-

cal criteria can range from perspectives holding that tests and test items

should be independentofparticular cultural content and universally applica-

ble, to perspectives recommendinguseof items that have particular cultural

relevance and salience. Approaches consistent with the former perspective

are represented by a host of workersin thefield ofintelligence. To name only

a few, these include Cattell and Horn (1978), Spearman (1923), Raven

(1960), Porteus (1965), and Vernon (1962). The latter perspectiveis less well

represented, althoughculturally specific tests have been developed. Thetests

created by Binet and Wechsler are moredifficult to classify, as they appearto

lie somewhere betweenthe culture-fair test approach and the approach that

attempts to incorporate specific cultural factors into test development.

Although the history of the psychometric approach can be traced back to

the pioneering efforts of Galton, factor analytic theories soon became the

hallmarks of the approach. Best known among the factor analytic theories
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are those developed by Spearman (1927), Burt (1949), Thomson (1951),
Thurstone (1938), Vernon (1962, 1969), Guilford (1967), Cattell (1971), and
Cattell and Horn (1978).

Spearman (1904) provided thefirst formal or mathematical statement of
the commonfactor model, a model that was, however, limited to specifica-

tion of a single commonfactor amonga set of measures. The mathematical
model developed by Spearman embodied a two-factor theory, as two classes
of factors were hypothesized. The first class had a single member, the one
general factor that was commontoall tests in an analysis and, by extension,
that represented the single element in common amongall typesof intellective
activity. The secondclass of factors contained a theoretically infinite number
of unique factors, each representing a combination of error variance as well
as reliable variance specific to a given test, i.e., any particular form ofintel-
lective activity.

Ratherlater, Spearman (1923, 1927) provided something of comparable or
greater value: a psychological theory of the cognitive bases of his two-factor
theory of generalintelligence. Spearman posited three processes that consti-
tuted the waysin whichintelligence was exhibited: the apprehension of expe-
rience, the eduction of relations, and the eduction of correlates. The factor
motivating an individual’s cognitive activity was assumed to be mental en-
ergy, a force directed to certain “engines” or mentalstructures that were ap-
propriate to the intellective task at hand. As the construct of nonspecific
mental energy appeared to correspond well to the mathematically defined
general factor, g, and the “mental engine” construct corresponded to the
unique factors, the results of many analyses reported by Spearman (1927)
lent credence to the hypothesis that there is a single, general factorofintelli-
gence and that this factor perhaps hasa biological and a genetic basis.
For manyyears, the major alternative to the two-factor theory of Spear-

man wasthe theory of primary mental abilities proposed by Thurstone and
his associates (Thurstone, 1938). According to Thurstone’s theory, there isa
small number of functional unities orprimaryfactors that reflectintellective
performancein delimited domains. The several factors, while statistically
correlated, were hypothesized to have functionally independentbasesat both
the cognitive and physiologicallevels.
Toward the end of their careers, Spearman and Thurstonewereforced to

accede to patterns of empirical data, Spearman admitting the existence of
group factors and Thurstone recognizing the presenceofa general factor ob-
tained from analyzing correlations amongobliquely rotated primaryfactors.
The resulting portrait of ability structure was a hierarchy of factors, with
more general factors toward the top of the hierarchy and more specific fac-
tors lower in the hierarchy. Such a hierarchy appearsto fit well the models
discussed by British theorists such as Burt (1949), Thomson (1951), and
Vernon (1962). In the most complete presentation of the model, Vernon
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(1962) had g, or generalintelligence, at the apex of the hierarchy; two major

subgeneral factors, verbal/educational (v:ed) and spatial/mechanical (k:m),

immediately below g; and the array of narrower group factors at a lower

level.

Given the generalsimilarity of the hierarchical factor structures of human

abilities presented by Vernon (1962) and others, it appears that all previous

factor models of humanabilities, except for the model developed by Guilford

(1967), may be represented by a single hierarchy of factors. Indeed, Gus-

tafsson (1984) claimed that a single hierarchial model well described previous

research and theory on abilities and presented empirical evidence consistent

with such a model. However, there are at least two considerations which are

relevent before a single hierarchical model is accepted. First, Cattell (1971)

predicted, on the basisof his theory of fluid and crystallized intelligence, that

tests assessing types of knowledgethat are explicitly taught should load ona

crystallized intelligence factor regardless of the content included onthetest.

In line with Cattell’s prediction, mechanical knowledge tests tend to load

most highly on the crystallized intelligence factor, a finding replicated in

many studies. This stands in contrast to the ability hierarchy presented by

Vernon (1962), according to which tests of mechanical knowledge should

load on the k:m subgeneral factor, a factor otherwise very similar to a fluid

intelligence factor. Second, and more important for the present chapter,

Cattell’s theory of fluid and crystallized intelligence throws some doubt on

the interpretability of a g factor. Since fluid and crystallized intelligence have

different life span trends (Horn, 1980) as well as different heritabilities

(Cattell, 1985), it is important that they be differentiated and not simply sub-

sumed under one general rubric. Although evidence has been presented

(Jenkinson, 1983) that performance for sixth grade subjects derived from

several reaction time tasks correlates at about the same level of magnitude

with both fluid and crystallized intelligence, it may be that different patterns

of relationships would be found for subjects at different age levels.

Information Processing

There are several variants within the information processing approach to

the studyofintelligence, each focusing on different aspects of cognitive func-

tioning. Two of the more general approachesare termed the cognitive corre-

lates approach and the cognitive components approach(Pellegrino & Glaser,

1979). What they have in commonis a shared paradigm of measuringrate or

speed of reaction to stimuli with the aim of determining the type of mental

representation or mental process central to a given type ofintellectual activ-

ity. What separates the two approachesis the level of specificity of the pro-

cessing models proposed. The cognitive correlates approach, on the one

hand, focuses on relating performance on well-researched reaction time par-
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adigms to performance on ability measures, such as traditional psychometric
tests, without having explicit models specifying the elementary information
processes involved in the reaction time tasks and the ability measures, thus
failing to specify the bases of individual differences in either type of measure.
The cognitive components approach, on the other hand,seeks explicitly to
analyze the essential elements of complex reaction time tasks into the serial
operation of a numberof elementary information processes. Information
processing strategies and regression weights for elementary processes are
then correlated with performance ontraditional individual difference mea-
sures of the sameability, to determine which parameters derived from there-
action time task account for observed individual differences on the tradi-
tional types of measures.

Since the focus of this chapter is on estimating the relationship between
psychometric or Spearmanian measures of g and reaction time measuresde-
veloped in the Galtonian tradition, we limit our discussion below to work
done within the cognitive correlates approach. The so-called Galtonian mea-
sures we will discuss will be inspection time, evoked and event related poten-
tials, and simple and choice reaction time. The former two approaches, in-
spection time and evoked and eventrelated potentials, will be discussed only
briefly. More detailed attention will be given to the simple and choice reac-
tion time paradigm,as a great deal of attention has been given to this latter
topic in current researchliterature.

MAJOR REACTION TIME PARADIGMS

Inspection Time

The inspection time (IT) paradigm is one in which the subject is asked to dis-
criminate between the length of two lines of obviously different length that
are presented side by side on a tachistoscope. Theinitial presentation dura-
tion is such that the subject is able to makethe discrimination withoutdiffi-
culty. This is followed by decreasing the presentation duration, until the sub-
ject is brought to the level of exposure where he or she can make the
discrimination with some predetermined level of accuracy (e.g., 85% or
95%). For nonretraded subjects, presentation durations ranging from 100to
150 milliseconds (ms) are typically sufficient to allow discrimination of the
length; for mildly retarded subjects, presentation durations approximately
double those for the nonretarded are needed. These findings, using extreme
group designs, suggest that mentalageis a salient variable explaining differ-
ence in IT results. There is evidence, however,that this may not be the case,
as differences in IT performance between mentally retarded and nonretarded
individuals maybesignificantly related to differences in cognitive Strategy
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(Lally & Nettelbeck, 1977; Nettelbeck, 1982), and not simply differences in

mentalability. Furthermore, evidence concerning the magnitude of correla-

tion between IT and g-loaded measuresis mixed. Some (¢.g., Eysenck,1983),

claim very strong IT-IQ correlations, correlations of the magnitude of — .80

to —.90; others (e.g., Nettelbeck & Kirby, 1983) report correlations between

IQ and IT around — .50;yet others (e.g., Vernon, 1983) have foundcorrela-

tions between IT and IQ to beessentially zero.

Results such as these indicate that a great deal of additional research is

neededto establish (a) the magnitudeof the relationship between IT and IQ,

and (b) the functional nature of the IT-IQ relationship. Accordingly, caution

should be used whengeneralizing about the usefulnessofthe inspection time

paradigm as an index of general intellectual functioning.

Evoked and EventRelated Potentials

Oneof the early empirical studies assessing the relationship between average

evoked potential (AEP) waveform and psychometricintelligence was carried

out by Ertl and Schafer (1969). Correlating latencies of the first four sequen-

tial components of the AEP with levels of performance on the Wechsler In-

telligence Scale for Children and the Primary Mental Abilities Test, Ertl and

Schaefer (p. 422) concluded that “evoked potentials, whichreflect the time

course of information processing by the brain, could be the key to under-

standing the biological substrate of individual differences in behaviouralin-

telligence.” The IQ-AEPcorrelations on which Ertl and Schafer based this

conclusion ranged from .10 to .35, correlations that are surely interesting,

but seemingly not of the magnitude to permit as bold a statement as was

made.

An encompassingtheoretical model, both positing and explaining a strong

relationship between AEP and psychometric measuresof g, has been put

forth by A. E. and D. E. Hendrickson (Hendrickson & Hendrickson, 1980;

Blinkhorn & Hendrickson, 1982; A. E. Hendrickson, 1982; D. E. Hendrick-

son, 1982). Assuming the common metaphorofthe mind as computer, the

Hendricksons suggested that differences in hardware, which can be assessed

by waveforms evoked by auditory stimuli, reflect differences in biological

constitution and may explain individual differences in psychometric mea-

sures of g. Central to the theorizing of the Hendricksonsis what they term an

R parameter, an estimate of the capacity of the brain’s neuronal system for

error-free synaptic transmission of impulses. The higher the value of the R

parameter, the greater the efficiency of the nervous system, and the greater

the probability of error-free signal transmission. These, in turn, are associa-

ted with higherlevels of intelligence as well as more complex, longer AEPs.

The empirical support for the Hendrickson model comes primarily from

their own work.In these studies, the AEPswereelicited by 85 decibel clicks,
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and the summary AEP waveform wasobtained by averaging overthefirst
256 msof a large numberofindividual evoked potentials. Using several mea-
sures of complexity of the AEP waveform, Blinkhorn and Hendrickson
(1982) found a .54 correlation between AEP and IQ asassessed by the Raven
Progressive Matrices, and D. E. Hendrickson found a .72 correlation be-
tween AEP and overall performance on the Wechsler Adult Intelligence
Scale. Research replicating and extending the Hendrickson findings wasre-
cently reported by Haier, Robinson, Braden, and Williams (1983). In this
study, Haier et al. provided evidence of correlation between AEPsandintel-
ligence of the same general magnitude as those reported by the Hendrick-
sons. Further, Haier et al. demonstrated that stimulus intensity affects
AEFP-intelligence correlations, and that that N140 and P200 portions of the
AEP waveform were the primary components responsible for the AEP-IQ
correlations.

Evidence consistent with these results has been recently summarized by
Schafer (1985), who described previous work (Schafer, 1982, 1984) demon-
strating substantial correlations between evoked potential amplitude and
psychometric measuresofg. In the 1982 study, Schafer presented three audi-
tory stimulus conditions to mentally retarded and nonretarded adults. The
three conditions involved presenting the stimuli (a) periodically, (b) ran-
domly, and (c) contingent on the subject’s own action. Thefindings indicated

that the nonretarded subjects showed temporal expectency effects; thus,

when the auditory inputs were presented in the periodic or self-activation

conditions, the AEPs were smaller than when the inputs were randomly pre-

sented. The data from the retarded subjects, on the other hand,indicated no

such expectancyeffects. Schafer concluded that the retarded individuals did

not show the samelevel of inhibition as did the nonretarded subjects. Using

data from 74 adult subjects, Schafer found a correlation of .66 (.82, cor-

rected for attenuation) between IQ and a neural adaptibility score derived

from the AEPs. These results were substantiated by a later study (Schafer,

1984) which, based on 52 subjects, revealed a correlation of .59 between level

of AEPinhibition and WAISIQ.Schafer (1985, p. 241) concluded that: “By

identifying correlates of g factor intelligence outside the psychometric realm

the evoked potential studies may help to elucidate the essential nature of g

and hence of humanintelligence.”

Another approach using the evoked potential paradigm focuses more
directly on individual differences in information processing elements or
components. Here, problems whose solution requires specific cognitive pro-
cesses are presented to the subject. Presentation of such problemselicits
event-related potential waveformsthatrelate to specific information proces-
sing activities such as recognizing, encoding,classifying, selecting, memoriz-
ing, decision-making, etc. (Hillyard & Kutas, 1983; Kutas, McCarthy, &
Donchin, 1977). The waveforms elicited are complex and represent both
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exogenous, stimulus-related factors, and endogenous, information-pro-

cessing-related factors. The latter are usually assessed by the negative Nd

wave andthe positive P300 wave, both of which are observed 300 msafter

stimulus presentation. The study of longer, event-related potentials stands

in contrast to the study of early evoked potentials, such as used by the Hen-

dricksons and Schafer; the latter appear to indicate level of anatomic devel-

opment of the cortex and the fact that cortical pathways are functioning,

while the formerreflect the degree to which stimuli are processed (Parmellee

& Sigman, 1983).

Related to this point, Donchin (1979) described some interesting research

and theorizing concerning the relationship of speed-accuracy trade-offs in

reaction time to the P300 waveform and biocybernetic systems. In onestudy,

subjects were presented a series of male and female names on a cathode-ray

tube. The subjects were askedto classify the names presented as either male

or female. Two conditions were involved: (a) one in which the subjects were

instructed to be certain that the classifications were correct, and (b) a second

in which the subjects were asked to classify the namesas quickly as possible.

For the first condition, mean reaction times ranged from 536 msforthe cor-

rectly identified female names, to 632 ms for the correctly identified male

names. For the second condition, the mean reaction times were 389 ms and

537 ms, respectively. The increased speeds of reaction were accompanied by

increased numbers of classification errors. Of particular significance in

evaluating the role of the P300 waveform as an index of cognitive func-

tioning, gender classification errors were correlated with latency of the P300.

Whensubjects reacted prior to the onset of the P300 wave,i.e., the reaction

time for the male-female nameclassification was prior to the P300,the re-

sponse was usually incorrect. When,on the other hand,the reaction time was

slower than the onset of the P300, the subject was generally correct in the

name-genderclassification task. These results indicate that errors arise when

speed of reaction outpaces the cognitive activity necessary for successful

completion of a task and the manifestation of the P300 waveform indicates

that appropriate task-related cognitive processes were engaged in by the

subject.

In conclusion, it appears that interpretation of the meaning of the early

waveforms observed by the Hendricksons, Schafer, and others is compli-

cated by several factors: (a) that exogenous factors maybesignificantly in-

volved in their manifestation, (b) that selective auditory attention may be an

important factor in the results (Naatanen, 1982; Vanderhaeghen, 1982),

and (c) that meaningful, correct results of cognition may havelittle to do with

average evoked potentials. Nonetheless, and these caveats notwithstanding,

the recent research on early evoked potentials is astounding in its implica-

tions. If the correlation between waveform andintelligence can be reliably

shown to be of the magnitude reported by the Hendricksons, Schafer, and



ELEMENTARY COGNITIVE CORRELATES OF G 79

other researchersin the area, new conceptualizationsof the bases of individ-
ual differences in intelligence will have to be developed.

Simple and Choice Reaction Time

The history of reaction time investigations can be traced back to the work of
Donders(1969, originally published in 1868), who developed the subtractive
method to estimate the time required for execution of elementary cognitive
processes underlying choice reaction time. Prior to Donder’s work,it was as-
sumed that neural transmission and thinking were instantaneous. Morere-
cently, reaction time indices have been used for measuring speed of response
for both simple and complex mental processes. The formeris exemplified by
the work of Hick (1952) and Hyman (1953), who investigated the relationship
between reaction time and probabilistic uncertainties related to amount ofin-
formation presented. Thelatter is represented by approachesthat focus on
separating fundamental aspects of the information processing system into
componentparts such as access to short-term and long-term memory. (Fora
detailed historical overview, the reader is referred to A. R. Jensen, 1982.)
The so-called Hick paradigm involves measuring simple and choice reac-

tion time. Simple reaction time is assessed by measuring how longit takes a
subject to lift his or her finger from a “home”button following the onset of a
light located on a console directly in front of the subject. The time from onset
of the light until the subjectlifts his or her finger is termed the reaction time
(RT). Movement time (MT) is measured bythe timeit takes the subject to
movehis or her finger from the “home”buttonto a button directly in front of
the light that went on. Choice reaction time is measured in exactly the same
way, except that the complexity of choice increases. Thatis, rather than one,
knownlight thatwill go on, the subject is uncertain about whether one of two
(one bit of information), one of four (twobits of information), or one of
eightlights (three bits of information) will go on. For both simple and choice
reaction time, the subject is given a variably timed warning signal, usually be-
tween 2 and 5 seconds, before the onset of one of the stimulus lights.

Carroll (1981) analyzed the simple and choice reaction time task in terms of
the processing elements hypothesized to be involved in subject response.This
is depicted in Figure 1. As may be noted from examination ofthe diagram,
the task requires that respondents complete

a

series of independent informa-
tion processing steps. These steps include attending to the warningsignal and
stimulus source, apprehending and encoding the stimulus, and converting
the encoded stimulus into a plan to execute the action of lifting the finger
from the “home” button and movingit to the appropriate button in front of
the light that went on. Carroll used the term decision timeto refer to the time
the subject takes from the onset of the stimulus light to the execution of
lifting the finger from the “home”button. Usually, decision time is simply
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referred to as reaction time. Although the diagram implies that the various

attentional and information processing requirements are serially executed

and independent, such may notbethecase.In fact, there is strong evidence,

to be discussedlater, that individual differences as well as situational differ-

ences in the early part of the sequence may have pronouncedeffects on RT
and MT performance.

A second type of choice reaction time task was developed by Sternberg
(1966) to assess rate of search in short-term memory. The Sternberg para-
digm involves presenting on a monitora string of between one andsevendig-
its, followed by a short delay, usually 2 to 5 seconds in duration, and then
presentation ofa digit that may or may not have beenin the originaldisplay.
The task for the subject is to indicate, as quickly as he or she can, whetheror
not the probedigit was in the original display. The time between presentation
of the probe digit and the subject’s responseis the time taken to search the
contents of short-term memory and makethe requisite motoric response.
A third, classic paradigm, designed to assess speed of access to in-

formation stored in long-term memory, was developed by Posner, Boies,
Fichelman, and Taylor (1969). In the so-called Posner paradigm,the subject
is presented with letters that are physically the sameor different (AA or AB)
or semantically the sameor different (Aa or Ab). The task of the subjectis to
indicate as quickly as possible whether subsequentpaired letter presentations
are physically and sematically the same or semantically the same but physic-
ally different. In order to make the responsethata pairoflettersis physically
different but sematically the same, the subject must access semantic informa-
tion stored in long-term memory; physically identical stimuli, on the other
hand, require no such accessing of long-term memory,as simple perceptual
comparisonis all that is required to make a correct response.
The application of the general paradigms described above has, for the

mostpart, involved study of specific information processing requirements of
the tasks at the group level. More recently, there has been a significant
amountofinterest in research aimedat relating performanceon a variety of
reaction time measures, such as the Hick, Sternberg, and Posner paradigms,
and variants of these, to psychometricintelligence, namely the general factor
defined as Spearman’s g. (Again the readeris referred to A. R. Jensen, 1982,
for an historical overview.) As will be seen later in the chapter, most ofthis
work has been directed at ascertaining thereliability and magnitudeofcor-
relations between reaction time parameters and intelligence. This is, un-
doubtedly, an importantfirst step in the scientific investigation of an area.
Nonetheless, it seemsto us that the functional basis of the observed relation-
ships needs to be demonstratedif the data are to be practically and theoreti-
cally meaningful. We will turn now to some of these considerations.

Different aspects of information processing, as assessed by reaction time
measures, have been schematized in a general taxonomy of mental opera-
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tions by Posner and McLeod(1982). The schematization, whichis presented

in Figure 2, has heuristic value for the purposes of this chapter, inasmuchas

it may help to clarify potential theoretical and methodological issues con-

cerning observed reaction time-psychometric g correlates, and, at the same

time, give directionto the search for establishing the functionalbasis of these

relationships.

Posner and McLeodposit two dimensions, specificity and dynamics, for

classifying cognitive processes. Specificity refers to the degree of generality

of application of a mental operation orstructure; operations that are specific

have applicability to only a rather delimited range of stimuli or problems,

whereasoperations that are more general have a much wider range of appli-

cability. Dynamics, on the other hand,refers to distinctions that separate rel-

atively enduring components, such as access to semantic knowledge, that

change relatively slowly, from temporary componentsthat change during ex-

ecution of a task, potentially resulting in modification of performance. The

four resultant types of process comprising the two-by-twoclassification are

termed structure, trait, strategy, and state. The four types of processes are

only partially independent, and may functionally interact to affect perform-

ance on a task; or, the types of processes may be impossible to separate

conceptually or psychologically. For example, although strategies may be

temporary and learned within a given situation, they may also be stable and

enduring, constituting a fundamental, structural aspect of an individual’s

learned behaviorrepertoire. Hence, although the “strategy” and “structure”

categorizations appearto be separate, they do not necessarily represent func-

tionally or theoretically independententities.

 

 

DYNAMICS

ENDURING TEMPORARY

> SPECIFIC STRUCTURE STRATEGY

O
LL

O
Lid

Ou

YW

GENERAL TRAIT STATE   
 

FIGURE 2. Taxonomy of Mental Operations. After Posner and McLeod,1982.
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Muchofthe research focused on exploring the relationships between reac-
tion time measures derived from the Hick, Sternberg, or Posner paradigms
and g appearsto be guided by the assumptionthat the information processing
componentsinvolved are both general and enduring, reflecting a fundamen-
tal, relatively static trait. It can be assumedthat individual differences in the
components assessed are substantially derived from individual differences in
basic features of the neuro-anatomical system. Such a position is consistent
with certain psychometrically based theories of intelligence, particularly
Spearman’s theory, according to which psychometric intelligence is assumed
to be a trait that has its origins in neuro-anatomicalstructure and function.
Therefore, based on Spearman’s theory, individual differences in elementary
information processing components and psychometric measuresof g can be
traced eventually to differencesin biological make-up and function. Correla-
tions observed between RT parameters and IQ are interpreted as evidential
support for the centrality of the biological nature of intelligence.
The neurological or physiological models posited by the Hendricksons and

by A. R. Jensenillustrate this point. In the Jensen model, which is shown in
Figure 3, oscillations in excitatory potential are hypothesized to affect both
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FIGURE 3. Oscillation or waves of excitatory potential above and below threshold
(horizontallines) for excitation, showing faster and slower waves and stimuli (Si, S2, S3)
entering at different points in time. After Jensen (1980).
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reaction time performance andgeneralintelligence. The prime explanatory

factor for individual differences in performance on RTtasks,as well as on

measuresofg, is that individual differences in frequency ofoscillation natu-

rally occur. Slow oscillations result in fewer waves above a necessary thresh-

old level for stimulus reception and processing by the nervous system. More

rapid oscillations, on the other hand,increasethe probability of the individ-

ual being able to receive and respond to environmentalstimuli. In short, per-

sons whotend to have greater numbersofoscillations per unit time above the

threshold level receive and can encode many moreinterpretable stimuli from

the environment than individuals with feweroscillations above the threshold.

These individuals, on the average, should have higherlevels of intelligence in-

asmuch as they have, over time, encoded significantly more information

from their environments than those whoseoscillations are slower. Individu-

als with faster oscillation rates, according to Jensen’s theory, are also more

likely to be both fast and consistentin their reaction time performance. This

could occur because a person with a morerapidrate of oscillation would, on

average, be morelikely to have an oscillation above threshold coincident with

a stimulus than would a person with a slowerrate of oscillation.

Alternative models guiding both the search for and explanationof reaction

time performancecorrelates of g can be drawn from the hierarchy proposed

by Posner and McLeod. Such alternative models do not, in our opinion,

necessarily deny the possibility that biological, neuroanatomical features

may underlie and be commonto both RTandIQ test performance. But, per-

spectives that posit an almost direct mapping of the dimensionsassessed in

information processing approaches onto the trait putatively assessed by

g-loaded measuresofintelligence seem to ignore the variety and complexity

of factors that appear to be involved in RT performanceas well as in the IQ

measures themselves. For example, even though a single RT paradigm is

used, it is possible that all four types of processes discussed by Posner and

McLeod may be involved, affecting performance in varying ways and to

varying degrees.

Using the categories of process proposed by Posner and McLeod,wewill

now turn to someissues involvedin the search for explanations for observed

relationships between Galtonian reaction time variables and parameters and

Spearmanian, psychometric measures of g. Wewill rely primarily on recent

data from our laboratory, focusing on data involving the Hick paradigm.

CORRELATESOF REACTION TIME PERFORMANCE

A numberof investigations have been carried out using the Hick paradigm,

correlating derived RT parameters, such as total median RT, median RT for

1, 2, and 3 bits of information, RT intercept and slope, and intraindividual
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variability in RT, with performance on g-loaded measuresofintelligence. By

way of a general summaryoftheresults, the following points may be made.

First, to the best of our knowledge,all of the studies have confirmed whatis

knownas Hick’s law,i.e., RT increases linearly as a function ofbits of infor-

mation. Of this, however, we will have moreto say underStudyIII, whichis

discussedlater in the chapter. Second, median RTat the variousbit levels and

RT intercept correlate consistently with psychometric measures of intelli-

gence. These correlations tend to vary, but generally are only of moderate

magnitude. Third, the most consistent and strongest correlate of g seems to

be intraindividual variability of RT. The correlation is negative; thus, the

greater the variability of RT, the lower the g performance. This correlation

has been found for subnormal populations (Berkson & Baumeister, 1967),

for normal populations (Jensen & Munro, 1979; Carlson & Jensen, 1982),

and for gifted populations (Cohn, Carlson, & Jensen, 1985). Consistent with

these findings are results which showthatintraindividual variability seems to

be a very salient RT variable separating IQ groupsin extreme groups designs

(Cohn, Carlson, & Jensen, 1985; Vernon, 1985.) Fourth, althoughtheevi-

dence is mixed onthis point, several studies report nonsignificant correla-

tions between RT slope and psychometric measures of g (Jensen & Munro,

1979; Carlson & Jensen, 1982; Carlson, Jensen, & Widaman, 1983).

Although correlations among Spearmanian measuresofintelligence and

reaction time performance on the Hick paradigm seemtobefairly consistent,

the central question concerns the meaningofthe correlations. It may be, if we

once again consider the Posner and McLeodcategories, that the theoretical

assumption mapping a putative RT trait onto a putative psychometric trait

is essentially correct. If this were true, correlations between RT parameters

andintelligence could be interpreted in a relatively straightforward manner,

implicating central biological processes that affect the most generallevels of

information processing efficiency. On the other hand,if the theoretical as-

sumption is incorrrect or incomplete, the contribution to individual differ-

ences madebystructure, strategy, and state componentswill be disregarded.

Further, important research aimed at understanding how these and otherfac-

tors may contribute, either independently or conjointly, to RT performance
itself and to the observed correlations among RT parameters andintelli-
gence, will be ignored. In a slightly different vein, Borkowski and Maxwell
(1985, p. 221) suggested that “the relationship of rate of processing to g takes
on clear, unambiguous meaning only whenit is contrasted with other poten-
tial correlates such as processing skills, metacognitive states, and domain-
specific knowledge.”

Wewill now turn to some of our recent data which address the role thatin-
dividual differences in what Posner and McLeodterm “state”play in the rela-
tionship between RT parameters and psychometric measuresof g.
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THE ROLE OF ATTENTIONIN HICK RT PERFORMANCE

Study 1

The general hypotheses guiding the first investigation (see Carlson, Jensen,

& Widaman, 1983), which we will summarize, were that factors such as

arousal, orientation, and attention are involved in RT performance and ex-

plain a substantial amount of the variance in intraindividual variability in

RT. We further hypothesized that variables such as attention significantly af-

fect performance on measures such as the Raven Progressive Matricestest,

perhaps the most widely used measure of Spearman’s g, and account, to some

extent, for the correlations among RT parameters,especially standard devia-

tion of RT, and g. Severallines of evidence suggested the plausibility of the

hypotheses. For example, work by Lansing, Schwartz, and Lindsley (1959)

showed that warning signals given less than 100 ms before the test stimulus

did not lead to alpha blocking, an index ofcortical efficiency and arousal.

Warningsignals given around 400 mspriorto the test stimulus, on the other

hand,did lead to alpha blocking andto faster reaction times. Accordingly,it

appears that the level of arousal, affected by the elapsed time between a

warning signal and presentation of the stimulus, affects RT performance

in a significant way. (See Carroll’s schematization in Figure 1.) Similarly

implicating the role of arousal in RT performance, Sanders (1977) reported

that both uncertainty of the interval between the warning signal andthe task

stimulus and intensity of the warning signal increase arousal and increase

speed of response to a reaction timetask.

Reference to Figure 1 also showsthat attention deploymentat the time of

the stimulus mayplay a role in RT performance. This was empirically sup-

ported by Krupski and Boyle (1978), who showedthat cardiac deceleration at

the time of presentation of both the warning signal and the main stimulus

correlated significantly with quicker reaction times. Kahneman (1973) re-

ported similar results, although he used pupillary dilation as the index ofat-

tention or level of arousal.

In order to examinetherelationship between attention, RT performance

and g, data were collected on the following instruments for 105 seventh-grade

children: The Hick reaction/movement time apparatus, the Raven Progres-

sive Matrices, the California Test of Basic Skills (English and mathematics

subsections), a rate of reading comprehensionscale, and an attention meas-

ure. Since the attention measureis the only one probably not familiar to the

reader, it will be described in some detail. The measure used was the random

number generation task (RNG) developed by Evans (1978). This task was

chosen because it provides an index of vigilance and attention deployment

that assesses ability to concentrate on task requirementsovera seriesoftrials.

After being informed what “randomness” means,the task of the subject was



ELEMENTARY COGNITIVE CORRELATES OF G 87

to generate 100 numbers randomly,using the digits 1 through 10. Each num-

ber wasto follow the beat of a metronome,which occured every second. The

numbers were recorded ona 10 x 10 matrix and analyzed for disproportion

of sequencepairs within cells. The scores on the RNGtask can range from 0.0

to 1.0, with the higher numberreflecting less randomnessandpooreratten-
tion deployment. Although the RNGis an unusual task, validity studies
(Graham & Evans, 1977; Evans & Graham, 1980) have provided firm evi-

dencethatit is a sensitive and consistent index of attention deployment.

Table 1 reports the intercorrelations among the reaction time parameters,

the ability and achievement measures, and the attention measure. The most

consistent correlations amongthe reaction time parameters and the ability

and achievement measureswere for standard deviation of reaction time. At-

tention correlated significantly with standard deviation of reaction time and

with total reaction time. RT slope did not correlate as highly with any of the

ability measures or with the RNG.

In order to analyze further the relationships amongthe ability, achieve-
ment, and attention variables, a principal componentfactor analysis was per-
formed. This resulted in two factors: “g” (Factor 1) and “attention” (Factor
II). These results are displayed in Table 2.

Estimatesof the strength of association among the derived factors and the
information processing parameters were made by computing correlations
among the “g” and “attention” factor scores and the reaction time parameter
scores. The results can be seen in Table 3.
Examination of Table 3 will reveal that the standard deviation of reaction

time wasthe only significant correlate of g, whereas bothtotal reaction time
and the standard deviation of reaction time correlated significantly with the
“attention” factor. These relationships, though modest in magnitude, sug-
gest that intraindividual variability in reaction time and speed of reaction
time maybeatleast as closely related to attentional processes as to g. Within
the context of the Posner and McLeodhierarchy,this implies that elements

TABLE1
Intercorrelations Among RT Parameters and Correlations of RT Parameters

with Ability, Achievement, and Attention Measures
 

Parameter TotalRT SDRT

_

Slope Raven! Reading! CTBS? Attention?
 

Total RT 1.00 .13** 18 — .13 — .35** — .16 — .17*
SD RT 1.00 .33** —~.21* — .40** — .20* — .23**
Slope 1.00 — .02 — .23* 01 .02
 

'N = 105, 2N = 94, 3N = 104.

*p < .05.

*#n < .01.
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TABLE 2

Loadingsof Ability and Achievement
Variables on Factors Derived from

Principal Component Analysis
 

 

 

Variable FactorlI Factor Il

Raven .68 .28

Reading 53 — .43

Attention — .07 89

CTBS .90 Ol

Prof. Math 86 — .0l

Prof. English .86 ll

Eigenvalue 3.05 1.06

Percent Variance 50.8 17.7
 

of what they term “state” components may beas involved in RT-g correla-

tions as “trait” components. This was examined further in StudyII.

Study Il

The secondstudy to be described is based on data gatheredas part of a doc-

toral dissertation (Jensen, 1982). For several reasons, modifications in the

design and implementation of Study I were made by(a) extending the sample

to be studied to include subjects of various age groups (grade 5, N = 26;

grade 9, N = 32; and juniorcollege group, N = 26), and (b) extending the

range of tasks used to measure the variables of interest. Of the variety of

measures used, those relevant to our present purposes were as follows:(a) the

Hick reaction time/movement time apparatus, (b) the Raven Progressive

Matrices test, (c) the Forward and Backward Digit span (FDS and BDS)

subtests of the Wechsler, (d) the Random Number Generation Index (RNG),

and (e) a measureof off-task glances observed between the warningsignalof

the reaction time measure andthe presentation of the stimuluslight. Since all

the measures mentioned have already been described, or are likely to be fa-

TABLE 3

Correlations of RT and MT Parameters with “G”

and “Attention” Factor Scores
 

 

 

RT/MTParameter “G” “Attention”

Total RT — .08 .24*

SD RT — .20* .30**

Slope .03 — .08

*p < .05.

**p < .01.
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miliar to the reader, “glances”is the only index which will be elaborated on.
In oureffort to gain a fuller perspective of what we previously termed “at-

tention,” we included a measure which appears to be rather different from
the RNG,yetstill assesses an aspect of attentional processes. Our thinking
wasguided by research which showed that RT, as well as a numberofother
speeded measures,correlated significantly with the subjective estimates sub-
jects gave of their susceptibility to distraction (Austin & Hemsley, 1978).
Also, the numberof off-task glances subjects made during the preparatory
interval, i.e., the time between the warning signal and the onset of the main
stimulus, correlated significantly with RT latency and variability of RT
(Krupski, 1977; Krupski & Boyle, 1970).
The intercorrelations amongthe reaction time parameters and the ability

and attention measures are shown in Table 4. Examination ofthe table re-
veals rather modestcorrelations, with the strongest relationships between RT
and SDRT and amongthe ability measures (FDS, BDS,and Raven matrices).
RT did notcorrelate significantly with any ofthe ability measures, although
SDRTdid. In addition, significant correlations were found between RNG
and both RT and SDRT.

Unfortunately for the purposesof this discussion, the design of the study
involved groups varying widely in age. Accordingly, chronological age (CA)
was a confoundingfactor in the observedintercorrelations. In order to con-
trol for these confounding effects, CA waspartialled out of the correlations
amongthe ability, attention, and RT measures.

Consistent with the method of analysis used in Study I, principal compo-
nent analysis with varimax rotation was performed on the ability and “atten-
tion” measures. The results, reported in Table 5, yielded two factors with
eigenvalues greater than unity. Factor I, marked by the forward and back-
ward digit span measures and the Raven matrices, was labeled g. FactorII,
marked by the RNG and glances, waslabeled “attention.” The percentage of
variance accounted for by factors I and II was 32% and 26%, respectively.

TABLE 4
Intercorrelations Among RT Parameters and Ability and

Attention Measures
 

RT SDRT

~~

BDS FDS Raven Glances RNG
 

RT — .69 — .14 —.14 — .13 — .09 2/7
SDRT — — .27 — .20 — .25 — .13 25
BDS — 42 33 .02 16
FDS — .32 — .07 — .04
Raven — — .18 — .07
Glances — 31
RNG —
 

R values > .19 significant, p < .0S.
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TABLE 5
Principal Component Analysis on Ability
and Attention Measures (Chronological Age

Partialled Out)
 

 

Factor I Factor II

BDS 75 — .35

FDS 76 08

Raven .62 — .06

Glances 13 72

RNG 17 78
 

The correlations of the CA-partialled RT parameters with the two factors

are shownin Table 6. Inspection of this table reveals that RT does not corre-

late significantly with g, although SDRT does. Concerning the relationship

between SDRTandg, the results are consistent with those reported in Study

I. Consistency in performance on the RTtask appearsto be the best correlate

of any of the Hick reaction time parameterswithg, a finding thatis in accord

with the results of most investigations which have examined therelationship

between intraindividual variability on the Hick reaction time task andper-

formance on psychometric measures of g. Another result consistent with the

data reported in Study I involves the positive correlation between the

standard deviation of reaction time and “attention”; individuals who tend to

be consistent in their RT performancetendto be higheron attention deploy-

ment(a high score on the RNG indicates poorer attention deployment) than

less consistent individuals. The general conclusion stated earlier, that SDRT

is as much related to attention deploymentasto g, is given further support by

these results.

Concerning total median RT,the results of Study II are again consistent

with those of Study I insofar as RT correlated significantly with the “atten-

tion” factor. This implies that, in these studies, the significant zero ordercor-

relations between g-loaded measuresof intelligence and RT may bedue,at

least partly, to the fact that both the RT tasks andintelligence measuresre-

quire deploymentof attention in orderto attain high levels of performance.

TABLE6

Correlations of Residual RT Parameters

with Factor Scores for “G” and “Attention”
 

 

“G” “Attention”

RT .01 .16*

SDRT — .17* .20*
 

*Significant, p < .01.
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Study HI

The results of Studies I and II cast some doubt on the contention that the
trait-like measures of psychometric g and measures derived from the Hick
paradigm correlate consistently because both assess the same construct,intel-
ligence. Rather,it appears that the mostsalient ofthe reaction timecorrelates
of g, the standard deviationof reaction time,also is correlated with attention
deployment. Recalling the discussion of Posner and McLeod (1982), it seems
reasonable to suppose that the measures derived from the Hick paradigm re-
flect strategy or state variables as well as trait-like dimensions of individual
differences.

Given the above speculation, we designed a study to determinethe effect of
proceduralvariations on Hick performance. Jensen(1985) referred to an un-
published study of practice effects on Hick performance, claiming that no
significant effects had been found;this findingis consistent with the assump-
tion that the Hick paradigm yieldstrait-like measures. However, the unpub-
lished results are inconsistent with a large body of research on reaction time
that documentsratherpredictable effects on RT as a function of practice. Re-
search on RT has found that average RT tendsto decrease as a function of
practice, and that the RT effect of important structural variables tends to de-
crease with practice as well (Welford, 1980).

Translating these findings into the context of the Hick paradigm, we would
expectto findresults such asthose portrayed in Figure 4. The topmost dashed
line in the figure represents RT performanceonthefirst session; the next
lowerline, performanceon the secondsession; and so on. These hypothetical
curves embody two majoreffects consistent with previous research on prac-
tice effects (Welford, 1980): (a) the intercept of the RT-bits function(i.e.,
performanceat 0 bits) should decrease with increased practice, and (b) the
slope of RT as a function of bits should decrease with increased practice.

In the vast majority of reaction time studies employing the Hick paradigm,
subjects are typically presented with the 0-bit condition first, followedin or-
der by the 1-, 2-, and 3-bit conditions. Because of this, practice andbit effects
are perfectly confounded. Given this confounding, we would predict RT per-
formance underthe standard ordering of conditions to resemble that shown
by thefilled circles in Figure 4. Standard ordering should result in this pattern
of results, because the 0-bit condition is administered to all subjects only un-
der conditionsofleast practice on the task, and the 3-bit condition is adminis-
tered to all subjects only when they are most practiced on the task. If, on the
other hand, conditions were presented in the reversed order, starting with 3
bits and ending with 0 bits, RT performance should resemble the linear func-
tion defined by the boxesin the figure. Using the reversed order of presenta-
tion of conditions, practice and bit effects are again perfectly confounded.
However, underthe reversed order, practice and bit effects are perfectly in-
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FIGURE 4. RT performance on the Hick paradigm as a function ofbits, practice, and

order of presentation.

versely correlated, whereas practice and bit effects are perfectly positively

correlated under the standard order of presentation of conditions. Finally, a

third ordering thatis possible is a random ordering of conditions. Under ran-

dom ordering, performanceat each level of bits would be equally frequent

during each session; practice and bit effects are, therefore, uncorrelated.

Given random ordering of condition and estimating the relation between RT

and bits across sessions would result in the linear function defined by the

unfilled circles in Figure 4.

To summarize the patterns of predicted results portrayed in Figure 4, we

predicted the highest RT intercept and lowest RT slope for the standard con-
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dition, the lowest RT intercept and steepest RT slope for the reversed condi-
tion, and middle range RTintercept and slope for the random condition.
Similar predictions may be maderegardingtheeffect of conditions on MTin-
tercept and slope, except that the expected value of the MTslopeis assumed
to be zero, rather than somepositive value as is the case for RT slope.
To test the preceding hypotheses, we randomlyassigned 55 subjects to one

of three orderings of conditions — standard, reversed, and random. The sub-
jects were undergraduate students in an introductory psychologyclass. Each
student wastested individually and received 60trials using the Hick appara-
tus. Under the standard ordering, blocks of 15 trials were given in the 0-, 1-,
2-, and 3-bit conditions, respectively. Under reversed ordering, the blocks of
15 trials were presented in order, beginning with the 3-bit condition and end-
ing with the 0-bit condition. Under random ordering, the 60 trials were bro-
ken up into 3 blocksof20 trials; within each block of20 trials, the subjects re-
ceived five trials at each of the fourlevels ofbits.

The results of the experiment were analyzed in two ways: as Condition x
Bits repeated measures ANOVAs,using median RT and median MTat each
bit as dependentvariables; and as one-way ANOVAs,using Condition as the
independent variable and intercept and slope for RT and MT computed for
each subject as dependent variables. Because both methodsofanalysis pro-
vided identical patterns of findings, and becausethe latter analyses are easier
to explain, only the results of the one-way ANOVAswill be presented here.
The results of the analysis of the RT intercept scores wereclearly in line

with our hypotheses. As shownin Table7, the standard condition yielded the
highest intercept, the reversed condition the lowest, and the intercept for the
random condition fell between those for the other two conditions. Due to

TABLE 7
Results of ANOVAs on RT and MT Performance:Intercepts and Slopes
 

Condition
 

Dependent Variable Standard (N = 19) Random(N = 18) Reversed (N = 18)
 

RT

Intercept 420.8 408.0 403.0

(47.4) (29.4) (39.7)
Slope 14.3 22.2 26.4

(8.0) (8.7) (12.3)
MT

Intercept 395.6 382.9 364.7

(44.1) (30.9) (15.1)
Slope — 4,3 —0.1 8.3

(9.2) (5.2) (9.2)
 

Note: Tabled values are means, with standard deviations in parentheses; all tabled
values are reported in milliseconds.
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rather high within-cell variability, the overall test of difference between

conditions was nonsignificant, F(2,52) = 1.00. However, our a priori hypo-

theses were not only directional but specified a linear relation between RT in-

tercept and condition,since the three levels of condition correspond to three

equally spaced levels of practice. The linear trend of condition on RT inter-

cept was of marginal significance, ¢(52) = 1.40,p <. 09, one-tailed, and the

quadratic trend was nonsignificant, 752) = .30, n.s. Thus, there wasa dis-

tinct linear decrease in the intercept as a function of practice, a decrease that

was of marginal significance.

Theresults of the ANOVAon the RTslope terms were also consistent with

our hypotheses, as shown in Table 7. The overall effect of conditions was

highly significant, F(2,52) = 7.19, p < .002. Once again, there was a decided

tendency for the RT slope to decrease linearly as a function of practice,

F(1,54) = 13.94, p < .001, and the quadratic effect of practice was non-

significant, F(1,54) = .44, n.s. As we had expected, practice effects led toa

decrease in the RT slope values moving from the reversed to the random con-

dition and, again, from the random to the standard condition.

The results of the ANOVAson MTintercept and slope werealso strongly

supportive of our hypotheses. The main effect of condition on MTintercept

wasstatistically significant, F(1,52) = 8.27, p < .006, while the quadratic

trend was nonsignificant, F(1,52) = .09, n.s. The means for MT intercept,

presented in Table 7, reveal the highest mean for the standard condition and

the lowest mean for the reversed condition, as hypothesized.

Finally, with regard to MTslope, the means, presented in Table 7, again

showthe standard condition with the lowest slope and the reversed condition

with the highest slope. The statistical significance of the difference among the

three conditions wasclear, F(2,52) = 11.43, p < .0001. Furthermore,the lin-

ear trend of condition was very strong, F(1,52) = 22.10, p < .0001, with no

indication of significant deviation from linearity, F(1,52) = .76, n.s.

Theresults of our analyses of order of administration, and therefore prac-

tice, on various indices derived from the Hick paradigm raise severalissues

for researchers using the paradigm to study RT —intelligence relations. A

first, and most basic issue is the status of the indices of performance on the

Hick paradigm. Giventhe effect of practice on intercept and slope estimates

for both RT and MT,it is unclear whether such indices conform to the defini-

tion oftrait-like measures. Perhaps after considerable practice on the Hick

task, performance indexed by intercept and slope for RT and MT would be

unaffected by further practice on the task. At such a point, the indices deriva-

ble from the Hick paradigm would appear to conform better to the notion of

trait-like measures, but it is an open question whether such asymptotic indi-

ces would correlate higher or lower with psychometric measures of general

intelligence.

A secondissuethatarises is that of bias in estimating parameters. Ourre-
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sults suggest that intercept and slope estimates for both RT and MTwill be
biased unless a random orderof presentation is employed. Asthe vast major-
ity of studies investigating RT-g relations used the standard order of presen-
tation, the accumulated estimates from such studies regarding the correlation
of Hick paradigm indices with psychometric measures of g may provide a
rather biased, and possible very misleading, summary of RT-grelations.
A third, and final issue concerns the appropriateness of the indices derived

from the Hick paradigm. Theintercept and slope of RT and MTare obvious
measures to estimate from data. However, our study demonstrated theef-
fects of practice within a single session on suchindices. Perhaps somerather
different form of estimate of performance would be morepredictive of psy-
chometric g. For example, one could run subjects for one or two sessions per
day across several days. From suchan array of data, it would bepossibleto
determine whether each subject had reached an asymptote in performance
and, if so, how quickly the asymptote had been reached. Speed of reaching
asymptote maybe a better predictor of g thaneither initial or asymptoticin-
tercept and slope of RT and MT.This is but one example of the attempt to
specify indices of performance that may be theoretically more appropriate
than the indices currently derived from the Hick paradigm.

SUMMARY AND SUGGESTIONS FOR FURTHER RESEARCH

In this chapter, we first presented several of the main approachesused in the
study of intelligence. It was argued that several of the approaches have more
in commonthanordinarily thought. Criticisms which suggest that the psy-
chometric tradition is devoid of ecological and adaptational significance
seem to be rather one-sided. Secondly, we outlined the major Galtonian par-
adigms, specifically inspection time, evoked potentials, and reaction time.
Several issues were discussed and caveats raised concerning relationships
among parameters derived from Galtonian measuresand those derived from
Spearmanian measures. Thirdly, recent data were presented concerning Hick
reaction time performance and therelationship between Hick parameters
and g.

Several implications for research can be drawn from the considerations
raised in the chapter. It appears to us that substantial research should be
undertaken aimed at further exploration of the underlying dimensionsin-
volved in performanceon reaction time measures. Data from several sources
indicate that a variety of factors contribute to individual differences in per-
formance. Concerning the Hick paradigm,the focusof our discussion, these
involve mode ofpresentation, practiceeffects, attention, arousal, and vigi-
lance, as well as general personality characteristics such as impulsivity and
extroversion. It seems safe to surmise that similar factors are involved in per-
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formance on other reaction time paradigms. Work designed to investigate

the cognitive and noncognitive dimensions involved in reaction time per-

formance and the correlation of derived parameters with psychometric mea-

suresof intelligence should provide a most valuable information base and ad-

vance our theoretical conceptions in the area.

Another area of research which wefeel importantis in the area of evoked

potentials. Though promising, the findings from research relating evoked

potentials to generalintelligence are inconclusive and should be extended.

This would include exploration of the relationships among measuresof psy-

chometricintelligence, including both fluid and crystalizedintelligence, and

very early evoked potentials. Further, study should be undertaken to explore

the relationships among later evoked potentials,1.e., beyond the 256-ms

wave-form which Eysenck andothers have used, and the information proces-

sing demandsofseveral of the major reaction time tasks themselves. These

would include the Hick, Sternberg, and Posner paradigms. Evidence

(Buchsbaum, 1974) indicating that average evoked responseshavefairly high

heritabilities suggests that research along these lines would be most fruitful,

potentially providing data which would help to clarify the source of individ-

ual differences in reaction time performanceitself and the relationship

among reaction time parameters and psychometric measures of intelligence.
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CHAPTER 4

Individual Differences
in the Hick Paradigm

Arthur R. Jensen
University of California, Berkeley

The theorem of “the indifference of the indicator,” put forth by Spearman

(1927, p. 197), is one of the most important and mostsurprising principles in

differential psychology. As noted by Spearman,this principle (call it “hy-

pothesis”if you prefer) also has practical implications for psychometrictests

of general ability, or intelligence. Our working definition ofintelligenceis g,

the most general factor (in a hierarchical factor analysis) of any large and di-

verse collection of cognitive tasks, or mental tests. Among persons of reason-

ably similar linguistic, cultural, and educational background,current stand-

ardized IQ tests afford a good, but not perfect, estimate of g. Spearman’s

so-called theorem of “the indifference of the indicator” of g refers to the

proposition that the formal characteristics and specific information content

_ Of atask are irrelevant to the measurementofintelligence, provided only that

the task is g loaded (i.e., correlated with the g factor) and that the formal

characteristics and information demandsof the task (referred to by Spear-

man as the task’s “fundaments”) are appropriate for the individuals tested.

Spearman (1927) stated his theorem as follows:

For the purpose of indicating the amountof g possessed by a person,anytest

will do just as well as any other, provided only thatits correlationwit SOF
6“ 99 edequally high. With this proviso, the most ridiculous “stunts will5

self-same g as will the highest exploits of logic or flights ofi ton. .

Another consequenceofthe indifference of the indicator, A 1 fhe sig-

nificance that should be attached to personalestimatesof") lgegee” made

by teachers and others. However unlike maybe the kinds300 ation from .
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which these estimates may have been derived,still in so far as they havea suffi-

ciently broad basis to maketheinfluence of g dominate over thatof the s’s [spe-

cific factors], they will tend to measure precisely the samething.

And here,it should be noticed, we comeat last upon the secret whyall the

current tests of “generalintelligence” show high correlation with one another,

as also with g itself. The reason lies, not in the theories inspiring these tests

(which theories have been most confused), nor in any uniformity of construc-

tion (for this has often been wildly heterogeneous), but wholly and solely in the

above shown “indifference of the indicator.” Indeed, were it worth while, tests

could be constructed which had the most grotesque appearance, and yet after

all would correlate quite well with all the others. (pp. 197-198)

A test that might be thought to have a “grotesque” apperance,as an indicator

of g, is one which measures a person’s reaction time (RT) to quite simple

stimuli. The RT test is “simple” in the sense that every individual in the

sample of personsselected to be tested is fully capable of understanding the

task requirements and of performingthe task correctly,after little or no prac-

tice. The only reliable individual differences in performance must derive

from the RT,or responselatency,itself.

A test of the hypothesis that individual differences on such a simpletest of

RT are correlated with individual differences in raw scores (numberofcor-

rect answers) on conventional complex tests of intelligence, such as the

Wechsler Intelligence Scale or the Raven Progressive Matrices, which are

highly g-loaded tests, would constitute a stringent and striking test of “the in-

difference of the indicator.” A significant correlation between RT and IQ,es-

pecially where the IQ is obtained from unspeededtests without time pressure,

would provethat tasks requiring reasoning, “higher mental processes,” or, in

Spearman’s words, “the eduction ofrelations and correlates,” although they

are good indicatorsofg, are not essential conditions for the manifestation of

individual differences in g. Reliable correlations between RT and IQ would

suggest that g is a perfectly continuous variable with respect to its loading in

various cognitive tasks. Thatis, there is probably no point on the whole con-

tinuum of task complexity that marks the appearance or disappearanceofg.

It would seem a reasonable hypothesis that the true (i.e., disattenuated) load-

ings of g on all cognitive tasks, of whatever complexity, range continuously

from some low but nonzero value to some value approaching 1. This would

mean that somepart of the variance in the g of conventional psychometric

tests of intelligence does not depend on reasoning, or problem solving,or the

other types of specific items of knowledge andskills that typically lend IQ

tests their “face validity” as assessments of intelligence. A comprehensive

theory of intelligence should account for the correlation between cognitive

tasks that are highly dissimilar in their superficial characteristics, such as vo-

cabulary, block designs, backwarddigit span, and Raven’s Matrices. Corre-



INDIVIDUAL DIFFERENCES IN THE HICK PARADIGM 103

lations between RT and unspeeded psychometric tests pose an even greater

challenge to theories of intelligence.

The hypothesis of a mental speed factor that is conceptually independent

of any particular type of cognitive task, as psychometric g is independent of

any particular kind of mentaltest (i.e., “the indifference of the indicator”),

wasfirst suggested by Galton.It is finally being recognized as one of the key

theoretical issues in the study ofintelligence. It may even be hypothesized,al-

thoughit is by no means yet demonstrated, that the presumed mental speed

factor and psychometric g both reflect one and the same basic phenomenon

or theoretical construct, whatever its nature. No one could reasonably deny

its virtually infinite variety of specific behavioral manifestations. Individual

differencesin all these various manifestations of g are correlated to some de-

gree as a result of their commonlink to the hypothesized basic phenomenon
responsible for g, which is presumably someas yet unknownaspect of brain
function.

The terms mental and cognitive can be used interchangeably in this con-
text. All that I intend to mean by them hereis that tests or tasks described as
“mental” or “cognitive” are those in which, for the populationtested, a negli-
gible part of the variance in performanceis attributable to individual differ-
ences in sensory acuity or motorstrength or dexterityperse.

The Hick Reaction-Time Paradigm

Simple RTis the person’s responselatencyto the onsetofa single stimulus,
or signal. Choice RT is the responselatency to any one of two or more dis-
tinct signals that may occur,each calling for a different response.It has been
well established, since at least as far back as the early reaction time studies of
Donders (1969), that choice RT is greater than simple RT. In proposing his
“subtraction method,” Dondersarguedthat the time difference between sim-
ple and choice RT (i.e., mean choice RT minus mean simple RT) was a meas-
ure of the time required for the mental processes of discrimination and choice
decision.

Merkel (1885) wasthe first RT investigator to use a fairly large number (n)
of choice alternatives — 10, in fact. He measured the mean RT whenthereac-
tion stimulus wasoneof7 alternative stimuli calling for different responses,
with n (also referred to as set size) varying from 1 to 10. He discovered that
the mean RT wasa smooth,negatively accelerated increasing function of n.
A precise mathematical relationship between RT and n wasfirst formu-

lated by a Germanpsychologist Blank (1934), who noted that RTincreases as
a linear function of the logarithm of n. (The baseof the logarithm isirrele-
vant to this relationship, sinceall logarithms, to whatever base, are just linear
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transformations of one another.) Thus, Blank discovered the simple linear

relationship

ART = Klogn,

where ARTis the increment in choice RT over simple RT, K 1s the slope con-

stant, and nis the degrees of choice. Peculiarly, Blank has been almost com-

pletely forgotten (e.g., there is not even a single reference to him in the most

comprehensive book on reaction time [Welford, 1980]), and Equation 1 has

become knownas Hick’s Law.

Hick’s (1952) real contribution, however, was not the discovery of a loga-

rithmic relationship between RT and 7, but the description of this relation-

ship in terms of information theory, following the original formulations of

Shannon and Weaver(1949). In information theory, the unit measureof in-

formation, as technically defined, is termed a bit (a contraction of binary

digit). One bit of informationis the amountof information which,when pro-

vided, reduces uncertainty by onehalf. In other words,a bit is a unit of infor-

mation equivalent to the result of a choice between two equally probable

alternatives (7). Here again is the same parameter, n, or degrees of choice. A

bit, then, is the binary logarithm(i.e., the logarithm to the base2, or log) of

n. Hick (1952)refers to the “rate of gain of information”with increasing de-

grees of choicein this technical sense of “information” borrowed from infor-

mation theory. Hence Hick’s Lawis actually just a special expression of the

general logarithmic relationship noted by Blank (Equation 1). Hick’s Law iS

best thought of as follows:

ART = K log2 n.

This does not differ from Equation 1, except for specifying the base of the

logarithm, which,in effect, scales the values of n in terms of bits of informa-

tion. This formulation of a binary aspect in choice RT has certain implica-

tions for a model of the process by which RTincreases as a function of de-

grees of choice, which is discussed in Hick’s now famouspaper.

A minor modification of Equation 2 was also proposed by Hickto take ac-

countof the subject’s additional uncertainty about just when any one of then

reaction stimuli would occur. He assumed simply that this degree of uncer-

tainty as to the exact momentof stimulus onset was equivalentto the degree

of uncertainty of adding one more choice alternative, and hence modified

Equation 2 as follows:

ART = K log? (n + 1).

Hick reported that this formula fit the then available data slightly better than

the simpler formula of Equation 2.

Hick’s Law is also referred to occasionally as the Hick-Hyman Law,be-

cause of the further investigation of it by Hyman (1953), who measured the
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effects of differing probabilities of each of the n signals. Hyman found no

need for the + 1 added to v in Hick’s modified formula (Equation3), and, for

the condition of equal probability of occurrence of each of the n signals and

error-free performance, proposed the following formula:

CRT = SRT + K logan,

where CRTis choice reaction time, SRT is simple RT(i.e., m = 1), and Kand

n are as previously defined. K, therefore, represents the constant increment

in RT as a logarithmic function of n. This formulationfits existing data quite

well. (The particular base of the logarithm, of course, does not affect thefit

in the least, but there are other advantagesto using log», in terms of informa-

tion theory models of neural models based on the binary all-or-none law of

nervecell discharge.) Because the measurementof RT for anyvalueof7 isli-

able to some degree of error, as are any physical measurements, and simple

RT (i.e., m = 1) is no exception, a more accuratefit to the data is provided by
the following: »

RT =at b log. n,

wherea is the intercept and b is the slope of the regression of RT on log, n.

The regression equation, of course, provides the best possible fit of the RT

data points to a straight line increasing function of log. n. The intercept, a,is

usually interpreted a representing the best estimate of the total time required

for the processes of attention and sensoryregistration of the reaction stimu-

lus (RS), transmission of the signal to the brain via the afferent nerves, cen-

tral reception or encoding of the RS, transmission via the efferent nerves of

the impulse to respond, and musclelag in response execution. The s/ope, b,is

interpreted as the amount of time required for the central processes ofdis-
crimination and choice. Because the length of time increases at a constant
rate as a function of log, n, the slope parameter b can be termedthe binary

processing time. Figure 1 showsthe fit of Equation 5 to the mean RTs ob-
tained by Merkel (1885) for 1, 2... . 10 values of m. Although Merkel ob-
tained his RT data 50 years before anyone haddiscovered thelinearrelation-
ship to the logarithm ofn, his data, as can be clearly seen in Figure 1, fit the
linear function to a remarkable degree. The goodnessoffit for Merkel’s data
is indicated by the linear correlation (Pearson r) of + .995 between RT and
the logarithm of n. This generic phenomenonofthefit of choice RTsto a lin-
ear function of the logarithm of the number of equally probable choice
alternatives has come to be moregenerally referred to as Hick’s Law.

Hick’s Law andintelligence. This phenomenonhas becomeofinterest
to differential psychologists mainly as the result of an experiment by Roth
(1964) published in an obscure German psychological journal andfirst
broughtto the attention of British and American psychologists by Eysenck
(1967). Roth reported a correlation of — 0.39 between the slope oftheregres-
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FIGURE 1. Mean RTsto stimulus arrays conveying various amounts of information

scaled in bits; n is the number of choice alternatives. (Data from Merkel, 1885, as re-

ported by Woodworth & Schlosberg, 1956, p. 33.).

sion of RT on log: 7, or bits, and a psychometric measureof generalintelli-

gence. That is, the moreintelligent subjects showed a lowerrate of increase in

RT with increasing bits of information than the less intelligent subjects.

Moreover, Roth found nosignificant correlation between the RT intercept

andintelligence. These findings suggested that individual differencesin intel-
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ligence might be conceivedofessentially in terms of differences in the rate of
information processing. An individual’s rate of information processing
could be simply quantified as 1/b, that is, the reciprocal of the Slope, b, in
Equation 5, expressed as bits per unit of time. Individual differences in rate
of information processing, even amounting to only a few milliseconds per bit
of information, as measured in the multiple-choice RT procedure, could pre-
sumably have considerable consequences when multiplied by months or
years of individuals’ exposuretoall the information offered by the environ-
ment. The resulting differences could account, at least in part, for the rela-
tively large differences observed between individuals in general knowledge,
vocabulary, and the many other developed cognitive skills assessed by IQ
tests. Such far-reaching implications of the RT-IQ correlation were presaged
by Peak and Boring (1926) on the basis of muchearlier investigations of the
relation of RT to psychometric intelligence:

If the relation of intelligence (as the tests havetestedit) to reaction time of any
sort can finally be established, great consequences, both practical and scien-
tific, would follow.(p. 93)

Hence, Roth’s findings with the Hick paradigm clearly merited further inves-
tigation. This was where my ownresearch on RTbegan. The purposeof the
present chapter is to summarize the main results of the manystudies of the
Hick paradigm conducted in my laboratory, in addition to the most directly
comparable studies by other researchers who have used apparatus and proce-
dures that are highly similar to mine. Only studies expressly concerned with
individual differences in RT andtheir relation to psychometric g are consid-
ered here. The experimental psychology of the Hick phenomenonperseis
not of primary interest in the present treatment. That topic has been quite
thoroughly surveyed elsewhere (e.g., Kirby, 1980; Smith, 1980; Teichner &
Krebs, 1974; Welford, 1980).

Measurementof Parameters of the Hick Paradigm

Thelinear relationship of RT to log n has been demonstrated with a variety
of apparatuses and proceduresthat differ in almost every imaginable wayex-
cept that theyall yield measurements of RT under varying degreesof choice.
Forthe studies conducted in my laboratory, I have devised a quite simple ap-
paratus. By now, to my knowledge,it has beenreplicatedin its essential fea-
tures in at least ten other laboratories, in America, Britain, and Australia.
An important feature of this apparatus, a feature seldom found in earlier

studies of choice RT,is the separation of RT and movementtime (MT). This
is made possible by the use of a “home” button, which the subject holds down
with the indexfinger of his preferred handuntil the onset ofthe reaction stim-
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ulus (RS), whereuponthe subject releases the home button and moveshis or

her finger to press the button closest to the RS. RT is defined as the timeinter-

val between onset of the RS and the subject’s releasing the home button. MT

is the interval between the release of the home button and depressing the but-

ton which terminates the RS.

The subject’s response console of the apparatus for measuring RT and MT

is shownin Figure2. It consists of a panel, 13 in x 17 in, painted flat black,

and tilted at a 30° angle. At the lower center of the panel is a red pushbutton,

1/2 in in diameter —the “home”button. Arranged in a semicircle about the

“home” button are eight red pushbuttons, all equidistant (6 in) from the

homebutton. Half an inch above each button (except the homebutton) is a

1/2 in faceted green light. Different flat black overlays can be fastened over

the console so as to expose arrays having different numbersof light/button

alternatives (i.e., the m of the Hick paradigm). Typically, we have used set

                 
FIGURE 2. Subject’s response console of the RT-MT apparatus. Pushbuttonsindicated

by circles, green jeweled lights by crossed circles. The “home”buttonis in the lower cen-

ter, 6 in. from each response button.



INDIVIDUAL DIFFERENCES IN THE HICK PARADIGM 109

sizes of 1, 2, 4, and 8 light/buttons, correspondingto 0, 1, 2, and 3 bits ofin-

formation in the technical sense.

The preliminary instructions to the subject in most studies begins withall

eight buttons exposed and the experimenter explaining the aim and proce-

dure of the study. Subjects are told that the apparatus measurestheir speed

of reaction and that we are investigating the theory that RTis related to IQ,

or general intelligence. Subjects are told to respond as quickly as possible

without makingerrors, the aim being to turn outthe light as quickly as they

can. There is no mentionofthe distinction between RT and MT.Subjects are

given several practice trials on the 8-button condition to familiarize them

with the task. Thenthefirst overlay is put on the console, exposing only one

light/button, and routinely five practice trials are given, or, if necessary, as

many moretrials as seem neededforthe subject to fully understand the task.

Before beginningthetest trials, subjects are routinely asked if they feel confi-

dent with the task and are ready to do their best. So far in our experience,

only severely retarded subjects, with IQs below 50, have required anything

more than these standard preliminaries. With retarded persons, and proba-

bly with young children,it is often necessary for the experimenter to demon-

strate the required performanceuntil the subject “catches on.”

The numberoftrials at each set size has been 15 in most studies, but 20 and

30 trials have also been used. In somestudies, the wholetest has been re-

peated on two or moredifferent days. A single trial consists of the subject’s

placing his or her index finger on the home button. Within 1 to 2 seconds, an

auditory warning signal is sounded (a “beep” of 1 sec duration), followed,

after a random interval of from 1 to 4 sec, by one of the green lights going

“on.” As quickly thereafter as he or she can,the subjectlifts his finger from

the home button and moves6 in to touch the microswitch pushbutton directly

below the light, which thereupon goes “off.” RT and MTareregistered in

milliseconds by two electronic timers with an accuracy of within +1 msec.

In more recent studies, the response console has been interfaced with a

computer (IBM-PC), and all RTs and MTsare automaticaly recorded on

diskettes. The entire sequenceoftest trials is programmed and controlled by

the computer. |
In all studies so far, set sizes have been presented in ascendingorder,i.e.,

1,2, 4, and 8. Imagine the light/button pairs in Figure 2 numbered1 to 8, go-

ing from left to right. Then the light/button pairs exposed by the overlaysfor

each set size are as follows:

 

Set Size (n) Light/Button Position

1 5

2 4,5

4 3, 4,5, 6

6 2, 3, 4, 5, 6,7

8 All positions
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The position of the light that goes “on” in anygiven trial is random, with the

constraint that each light goes “on” an approximately equal numberoftrials

within the limits of +1 trial. In a given study, every subject receives the same

“random”orderof light positions. Our aim has not been to study the effects

of experimentally manipulating task conditions, but to measure individual

differences under uniform conditionsfor all subjects.

The apparatusis so constructed as to make anticipatory responses impossi-

ble. Thatis, if the subject’s finger leaves the home button before the onset of

the light, the light does not go “on,” nothing is recorded, andthetrial cycle

must begin again. Since RTs of less than 150 msecarevirtually impossible,

due to a physiological limit, RTs of less than 150 msec are discarded as

“outliers.” Outliers at the other extreme have been eliminated by one of two

criteria in various studies. RTs or MTsgreater than 999 msec are discarded

and that particulartrial is repeated, but not until all the remaining trials have

been completed. The other criterion for outliers is RTs (or MTs)that fall

more than 3 SDs above the subject’s own mean RT. We have foundthatthese

methods for Winsorizing the distribution of each subject’s RTs make a negli-

gible difference when the median of RT overtrials is used to represent the

subjects average RT for a givenset size. Because the distribution of single-

trial RTs for a given subject is always skewed to the right(i.e., toward longer

RTs), its arithmetic mean is not as good a measureof central tendencyas the

median, whichis relatively insensitive to extreme valuesor outliers. Forthis

reason, too, the median has generally been found to havehighersplit-half

and retest reliabilities than the mean. Another advantage of the median over

the meanis that the mean RT overtrials tendsto reflect the standard devia-

tion of RTovertrials (symbolized RTo;), which is another parameterof theo-

retical interest. Because there is a physiologicallimit to the speed of reaction,

RTsfor a given subject vary more abovethe subject’s median RT than below

it. Variations of RT in the upwarddirection, that is, above the median,in-

crease both the standard deviation and the mean, causing these variables to

be correlated to some degree through confounding. The median, however,is

not nearly so confounded with the trial-to-trial variation in RT as is the

mean. The same conditions also pertain to MT. A more comprehensive expo-

sition of chronometric techniquesfor the study of individual differences has

been presented elsewhere (Jensen, 1985).

Variables Derived from the Hick Paradigm

The main variables that we have derived from the Hick paradigm,as repre-

sented by the RT-MTapparatus described previously, are listed in Table 1.

Eachofthe variableslisted in Table 1 is derived from the RT or MT data ob-

tained on an individual subject. Some, but notall, of these variables have

been extracted from the raw RT and MTdata in any given study. Atpresent,
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TABLE1
Parameters of the Hick Paradigm for Individuals
 

Variable Description Symbol
 

Reaction Time Variables

Median RT Median RToverall trials for a given numberof bits, RTo, RTi, RT2,

indicated by the subscript. RT;

Mean Median Meanofall the median RTs obtained ateach number RT X

RT ofbits.

Intraindividual The average standard deviation (SD) of RTs over RTo;

Variability trials at each numberofbits.#

Intercept of RT Intercept of the regression of median RTsonbits. RT Int. or RTa

Slope of RT Slope of the regression of median RT onbits. RT Slope or RTb
 

Movement Time Variables”

Median MT Median MToverall trials for a given number of bits, MTo, MT,, MT2,

indicated by the subscript. MT;

Mean Median Meanofall the median MTsobtained ateachnumber MTX

MT of bits.

Intraindividual The average SD of the MTsat each numberof bits.*_  MTo,
Variability

 

4The proper average of the SDsis the square root of the mean squared SDsat each numberof

bits. In most studies the distribution of an individual’s RTs and MTsare Winsorized to eliminate

outliers before calculating medians, means, orstandard deviations. For normal subjects, RTs

and MTsfalling outside the range of 170 to 999 msec,or falling outside the range of + 30 of the

individual’s mean RT (or MT)are discarded.

>The intercept and slope are not ordinarily computed for MT,as it has been found that the MT

intercept does notdiffer reliably from the mean median MT,andthe slope doesnot differrelia-

bly from 0, either for individuals or for groups.

it would be muchtoo costly in time andeffort to justify the slight gain in in-

formation that mightresult from a reanalysis of all of the original raw data

from past studies, just for the sake of being able to include the computation

of every variable we have ever lookedat from every set of data that we have

ever obtained. Instead, I will survey the available evidence in the mannerthat

has become knownas meta-analysis, which usesas its data base only the par-

ticular statistics that have already been computedin anypast study.

Descriptions and Identifying Sample Identification Numbers (SID)
of 33 Study Samples

To facilitate the presentation of statistics on various Hick parameters de-

rived from a pool of 33 studies, each study will henceforth be identified by a
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sample identification number (SID). The SID numbersare used henceforth

in all tables and the text to identify each of the 33 samples for which Hick

data were available.

Only three criteria jointly determinedthe selection of the studiesin this re-

view: (a) the study involves parameters of the Hick paradigm; (b) the appara-

tus and procedures for measuring the Hick variables do not differ essentially

from the RT-MTapparatus described previously, in which RT and MTare

always measuredseparately; and (c) the study’s primary focusis individualor

group differences in the Hick parameters and their relationship to conven-

tional psychometric assessments of ability. Some of the studies have not ap-

peared previously in the literature and someofthe statistics from studies that

have been referenced in the literature are presented here for the first time.

Not everypossible type of analysis of the RT-MT data and not every Hick pa-

rameter wasrelevant to the particular hypotheses under consideration in any

given past study, and therefore they have not previously had an appropriate

occasion for presentation, which is provided by the present comprehensive

review and meta-analysis. The 33 independent study samples, comprising a

total of 2317 subjects, are identified in Table 2. Unless specified otherwise,

subjects were given 15 trials on eachsetsize.

TABLE 2

Description of 33 Study Samples(Identified by SID Numbers) Used in RT-MT
Studies of the Hick Paradigm
 

 

SID No. N Study Sample Reference

1* 50 Univ. undergrads. Jensen (1979)?

2* 25 Univ. undergrads. Jensen (1982a,b)

3* 100 Univ. undergrads. Test-retest on different days. Re- Jensen lab.°

sults based on composite of Day 1 + Day 2 data

4* 50 Univ. undergrads. — Males Jensenlab.

5* 50 Univ. undergrads. — Females Jensen lab.

6* 57 Univ. undergrads. — Males Jensen (1982a)

7* 48 Univ. undergrads. — Females Jensen (1982a)

8* 10 Univ. undergrads.tested 15 trials on set sizes 1,2,4,8 Jensen (1979)

on each of 9 days, 1 or 2 days apart

9 48 Univ. undergrads. tested on new RT-MTapparatus Jensen lab.‘

10* 100 Univ. students (35 male, 65 female) Vernon (1981a, 1983)

11* 50 Univ.students Paul (1984)

12* 119 Vocational college freshmen— white males Jensen (in press)?

13* 99 Vocational college freshmenblack males Jensen (in press)

14* 56 Vocational college— white males Vernon & Jensen? (1984)

15* 50 Vocational college — black males Vernon & Jensen (1984)

16* 39 9th gradegirls (mean age 14.7 yrs.) in upper-middle Jensen & Munro (1979)

SES school. 30 trials at each set size: 1, 2, 4, 6, 8

17* 162 4th, 5th, & 6th graders (mean age 10.75 yrs., SD = Jensen (1982a)

0.93), 76 boys, 86 girls, in upper-middle SES
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SID No. N Study Sample Reference

school. Mean IQ = 112, SD = 14. 30trials on each

set size: 1, 2, 4, 6, 8

18* 99 High schoolstudents (mean age 16.7 yrs., SD = Braden (1985)

1.62). Normal hearing (HC) = 37; deaf children of

hearing parents (HP) = 31; deaf children of deaf

parents (DP) = 31. 59 males, 40 females. 20trials

on eachset size: 1, 2, 4, 8

19* 60 Gifted 7th graders (mean age 13.5 yrs., SD = 1.25) Cohn, Carlson, &

enrolled in college courses in math & science; top2. Jensen (1985)

to 3% in scholastic aptitude

20* 72 Average and superior 7th graders (mean age 13.2 Cohn, Carlson, &

yrs., SD = 0.42), mean at 85th percentile in scho- Jensen (1985)

lastic achievement on California norms

21 76 Gifted high school students (mean age 14.9 yrs., SD Wade (1984)

= 1.33). SAT and Raven Matrices scores on a par

with university students whoare 5 to 6 yrs. older.

15 trials on set sizes 1, 2, 4

22 20 Average 9th grade girls (mean age 14.4 yrs.,SD = Carlson & Jensen (1982)

0.62), middle-class school. 20 trials at set sizes 1, 2,

4,8

23 105 Average 7th grade pupils (mean age 13.1 yrs., SD = Carlson, Jensen, &

0.48), middle-class school. 25 trials at set sizes 1,2, Widaman (1983)

4,8

24 59 Elementary school children— white (meanage 8.3 Hemmelgarn & Kehle

yrs., SD = 1.45). Mean WISC-R Full Scale IQ = (1984)

123.5, SD = 11.2

25* 46 Mildly retarded young adults—30 males, 16 females Vernon (1981b)

(mean age 20.9 yrs., SD = 2.97). Mean IQ Ap-

proximately 70
26* 58 Sheltered workshop unskilled manual workers Sen, Jensen, Sen, &

(American) — 37 white, 21 nonwhite (mean age Arora (1983)

33.6 yrs., SD = 12.8, range 18 to 72 yrs.). Mean IQ

approximately 80. 20 trials on set sizes 1, 2, 4, 8
27* 60 Severely retarded adults, institutionalized (mean age Jensen, Schafer, &

31.3 yrs., SD = 11.7). Stanford-Binet mean IQ = Crinella (1981)
38.53, SD = 14.41, range = 14 to 62

28* 76 Elderly volunteers—26 males, 50 females (mean age Ananda (1985)

67.84 yrs., SD = 8.65, range 51 to 87). Physically

active, no sensory-motor impairments. Mean

years of education = 15.25.

29 182 Adults— 127 males, 55 females. 41 handicapped Nettelbeck & Kirby
workers (mean age 20.5 yrs., SD = 2.6; 1Q = 68, (1983)

SD = 10); 82 vocational college trade apprentices

(mean age 17.92 yrs., SD = 1.58; IQ = 109, SD =

10); 59 univ. undergrads. (mean age 23.5 yrs., SD

= 6.75; 1Q = 124, SD = 7). 64 trials on set sizes 2,

4,8



114 JENSEN

TABLE 2 (Continued)

 

 

SID No. N Study Sample Reference

30 40 Adults—26 males, 14 females (mean age [males] Barrett, Eysenck, &

23.92 yrs., SD = 4.15; [females] 26.29 yrs., SD = Lucking (1986)

8.30). WAIS Full Scale IQ = 105.23, SD = 18.99.

20 trials on set sizes 1, 2, 4, 8

31 46 Adults—22 males, 24 females (mean age [males] Barrett, Eysenck, &

27.52 yrs., SD = 6.77; [females] 28.21 yrs., SD = Lucking (1986)

7.16). WAIS Full Scale IQ = 106.57, SD = 13.18.

20 trials on set sizes 1, 2, 4, 8

32 112 Young adult male U.S. Navy trainees in electronics Larson & Rimland

course. 11 trials on set sizes 1, 3, 5 (1984)
33 93 College undergrads. —52 males, 41 females (18 to 22 Larson & Saccuzzo

yrs.). 11 trials on set sizes 1, 3, 5 (1985)f
 

*Indicates studies performed in Jensen’s laboratory with the original RT-MT appa-

ratus first described in Jensen & Munro (1979).

*The university students in every study sample from No. 1 to No. 11, whose ages fall

mostly between 18 and 22 years, have been found to have scores on standard norm-

referenced tests that fall almost entirely above the 75th percentile of the general pop-

ulation. Typical samples of these university students have mean Full Scale IQs of be-

tween 120 and 125 on the Wechsler Adult Intelligence Scale (WAIS), with SDs of about8;

thus the IQ variancein this populationis only slightly greater than onefourth of the IQ variance

in the general population.

>Studies from Jensen’s laboratory, not previously published.

“The new RT-MTconsoleis essentialy the same as the old one (described in the text), except for

one feature: the 8 stimulus lights and response buttons are one and the same,i.e., they are

pushbuttonsthat can light up; touching the lighted button turnsthe light off. (Used only for SID

#9). This arrangement maximizesstimulus-response compatibility, that is, the degree of proxim-

ity, correspondence,or similarity between the reaction stimulus and the required responseto the

stimulus.

dThe vocational college students are mostly 18 to 20 years of age. Nearly all score above the

25th percentile on scholastic aptitude andintelligence tests, with an estimated average IQ of 107.

Dueto self-selection of students, the black-white difference is generally less than half the differ-

ence found in the general population.

©These three groupsdiffer so slightly on all of the Hick parametersas to justify treating them

as a single group for most analyses. Wherethey are treated separately, the normal groupis la-

beled HC,the others HP and DP.

fThis apparatus differs from Jensen’s RT-MT apparatusby presenting the array of stimulus

“lights” of varying set sizes on a computer monitor; response keys directly below the stimulus

“lights” are located on the top row of the computer keyboard; the keyboard space barserves as

the home button. The apparatus measures RT and MT(in msec)forset sizes 1, 3, and 5.

Conformity of RT Data to Hick’s Law

Does the RT-MTapparatus and procedure used in the studies under review

yield data that conform to Hick’s Law? This question is addressed here both

in terms of the conformity of group means of RT data and the conformity of

individuals’ RTs to Hick’s Law.
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Group data. The 27 studies that present RT meansfor variousset sizes

are summarized in Table 3. The degreeoffit to the linear regression of RT on

bits (i.e., log. 7), or the conformity to Hick’s Law,is indicated by thesize of

the Pearson r in the last column of Table 3. The unweighted and N-weighted

meansof 7 were obtained via Fisher’s Z transformation. (The untransformed

rs average .992 and .993 for the unweighted and N-weighted means, respec-

tively.) The corresponding standard deviations are .006 and .003, for the

unweighted and N-weighted meanr. The rs for the 27 data sets range between

.971 and .999, with a median r of .994. The lowest r (.971) is for SID #9,

TABLE3
Mean Median? RT(in msec) as a Function of Bits and Regression of RT on Bits in 27

Independent Samples (N = 1850)
 

 

 

Bits Fit

SID No. Group N 0 I 2 3 r

1 University Students 50 8278 317 335 359 .985

2 University Students 25 300 335 357 380 .993

3 University Students 100 295 326 §6©350 §=6374_~—«998

4 University Males 50 291 325 351 370 ~=—s—.991

5 University Females 50 300 325 350 380 .999

6 University Males 57 283 316 341 371 .999

7 University Females 48 318 358 381 406 ~=-«.991

8 University Students 10 257 #286 298 321 .989

9 University Students 48 282 299 315 319 .971

10 University Students 100 312 345 363 387 .993

11 University Students 50 299 333 359 379 8.994

12 Vocational College Whites 119 339 — 397 430 .999

13 Vocational College Blacks 99 343 — 411 461 .995
14 + 15 Vocational College Males 106 309 347 375 399 .994

16 9th Grade Girls 39 291 333 356 390 .995

17 4th, Sth, 6th Graders 162 303 351 380 424 .996

18 High School Students 99 301 334 356 383 38.997

19 Gifted 7th Graders 60 319 355 383 412 .998

20 Average 7th Graders 72 373 442 480 523 .990
21 Gifted 9th Graders 76 322 341 364 — .999

23 Average 7th Graders 105 450 480 497 525 .995

24 Elem. Sch. Ages 6-11 59 449 494 520 545 .988

25 Retarded Adults 46 480 554 599 707 .987

26 Retarded & Borderline Adults 58 513 590 689 £878 .977

28 Elderly 76 337 #392 426 452 .986

30 Average Adults 40 298 317 £347 380 .993

31 Average Adults 46 316 332 $353 375 ~=§.997
 

Unweighted Mean 332 369 397 436 .995

N-Weighted Mean 335 373 401 439 ~=.995
 

*This is the mean (over Nindividuals) of the Nindividuals’ median RT (overf trials) at each

numberofbits.
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whichis the only one not tested with the usual apparatus. This one sample

wastested with a new version of the RT-MT apparatus in which the8 stimu-

lus lights and pushbuttons are one and the same; thatis, they are lighted

pushbuttons. The maximization of S-R compatibility (defined in Table 2,

footnote c) apparently causesslightly lesser conformity to Hick’s Law as well

as a considerably smaller slope. The slope for SID #9is strikingly out ofline

from that of the other groups of university students (SID #1-8) drawn from

essentially the same pool. But the intercept for SID #9 is notat all atypical.

An analysis of variance and trend analysis can be performedonthedata of

Table 3, in which the rows are Studies and the columnsare Set Size scaled as

bits. This analysis is shown in Table 4. The only two significant main effects

are differences between studies in overall mean RT andthe linear trend of RT

on bits. The eta squared (n?) indicates the percentage of the total variance

represented in Table 3 that is attributable to each source. (Note: Individual

differences are not represented in this analysis, in which the units of analysis

are group means.) It is clear from the correlations in Table 3 and from the

analysis of variance testing goodnessof fit of RT to a linear regression on bits

that there is indeed an extremely high degree of conformity of group means

to Hick’s Law.

Only one group on which meanswereavailable for 0, 1, 2, and 3 bits has

been intentionally omitted from Table 3. This is SID #27, which consists of

severely retarded institutionalized adults, whose performance wasin so many

wayshighly atypical of all other subjects who haveeverbeen tested (including

the mildly retarded) as to warrant not averaging this atypical group withall

the others. The mean median RT and MTforthe severely retarded subjects

are shown in Figure 3. This is also the only group ever tested that shows

longer MT than RT.

In contrast, Figure 4 showsthe overall unweighted and N-weighted mean

RT based on the 27 samples in Table 3. The fit of the data points to the

straight line is r = .998 for both the unweighted and N-weighted means.

 

 

TABLE 4

Analysis of Variance and Trend Analysis of RT Meansin Table 3

Source df Mean Squares F n2 (x 100)

Studies (S) 23 33641 .9 40.04* 79.81

Bits (B)

Linear Component? 1 137246.8 163.36* 14.16

Nonlinear Component 2 233.2 28 05

Residual (S x B) 69 840.1 5.98
 

aSID #12, #13, and #21 were omitted to avoid emptycells in the ANOVA.

>The trend analysis is based on the linear regression of RT onbits.

*p < .001.
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FIGURE 3. Mean median RT and M7asa function ofbits, in 60 severely retarded adults

(mean Stanford-Binet IQ = 39). (Data not included in Table 3.) (From Jensen, Schafer,

& Crinella, 1981.)

The data of Table 3 can be used to examine the question of whether Hick’s

alternative formulation, RT = a + log. (n + 1), fits the data better than RT

= a+ log.n. The regression of RT on log2(n + 1) was calculated for each of

the 27 studies. The weighted mean index of fit, r = .993 (SD = .018),

scarcely differs from the corresponding r = .995 (SD = .003) for the regres-

sion of RT on log, nm. However,the fit of the formula with m was better than

that of the formula with (n + 1) in 19 of the 27 studies, as compared with

only six studies for which the formula with (7 + 1) showedthebetterfit.

(There was equalfit [to 4 decimal places] in two studies.) The difference be-

tween 19 and 6 is significant (x? == 6.76, 1 df, p < .01). Thus, the difference

in fit favors the simpler formula; at least, there is no evidence of an advan-

tage of (n + 1) instead of m in the formulation of Hick’s Law.

Another question we can ask of these data is whether the mean RTforset

size 1 (i.e., simple RT or 0 bits, signified as RTo) is at all out of line with the

mean choice RTsatset sizes 2, 4, and 8 (i.e., 1, 2, and 3, bits). Some investiga-

tors (e.g., Nettelbeck & Kirby, 1983) have omitted a set size of 1 in their stud-

ies on the ground that there is some essential difference between simple and

choice RT. Of course, the processes of discrimination and choice are not

present in RTo. But does this affect the degree of fit to Hick’s Law? To find

out, the regression of RT on bits was calculated in each study for 1, 2, and 3
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FIGURE 4. Observed conformity ofRT data to Hick’s law shown bytheunweighted and

N-weighted meansof the median RT as a function ofbits, based on 27 of the independent

samples of Table 3 comprising a total of 1850 subjects.

bits, that is, omitting RT». Only 24 of the 27 studies in Table 3 are suitable for

this analysis, because only three set sizes were used in three studies. Table 5

showsthe effects of including or excluding RT» onthe intercept, slope, and

fit to Hick’s Law (using log, nj. It can be seen that the differences are very

slight. IfRTo were significantly out ofline with Hick’sLawfor choice RT, we

should expect RTo to differ significantly from the intercept of the regression

of RT on 1, 2, and 3 bits. This intercept should closely predict RT». A corre-

lated ¢ test based on these 24 studies was performedtotest the significance of

the difference between the actual mean RT» and the intercept (or predicted

mean RT») based on only 1, 2, and 3 bits. The difference (of 5.3 msec) does

not even approachsignificance (¢ = 1.21, df = 23). Thus, it appears that

Hick’s Law holds about equally forset sizes involving both simple and choice

RTsas for exclusively choice RTs. For obtaining measures of the intercept

and slope of RT in the Hick paradigm,there seemsto be nojustification for

excluding RT». |

It has also been found that Hick’s Law holds even whenthe subjectis not

i
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TABLE 5
Unweighted and N-Weighted Means and Standard Deviations

(Over 24 Samples?) of Intercept, Slope, and Index of Fit (r) to

Hick’s Law WhenRT,(in msec) Is Included or Excluded
 

Condition Unweighted N- Weighted

Parameter RT» xX SD xX SD
 

Intercept Included 333.40 65.90 336.55 62.38

Excluded 336.75 60.82 341.10 57.94
Slope Included 33.82 21.47 34.11 19.58

Excluded 32.27 26.64 32.22 24.31
Fit (r) Included .994 .007 994 .006

Excluded .998 .012 .998 .010
 

4SID #12, #13, and #21 are necessarily excluded becausethese studies

used only 3 levels of bits, which makes it meaningless to calculate the

regression parameters on only two points when RTpis excluded.

required to turn out the stimuluslight (referred to as single response, as con-

trasted with double response, where the subject has to turn off the reaction

stimulus after releasing the home button). All the subject has to doislift his

or her finger off the home button when oneof the lights goes on. Theresults

are shownin Figure 5. Not having to “program”the hand movementto turn

out the stimulus light cuts about 30 msec off the RT, that is, the time to re-

lease the home button after onset of the reaction stimulus. The Hick phe-

nomenonapparently reflects the degree of prior uncertainty of which signal

will occur rather than the processes that determinethe choice responseafter

the signal has occurred.

Conformity of individuals’ RT to Hick’s Law. An individual’s median
RT (overtrials for any given set size) is less erratic than the mean RT, and

therefore shows greater conformity to Hick’s Law. Hence, the median RTis

used in all the analyses discussed here.

Hick’s Law applies to individuals as well as to groups. However,there are

individual differences in the degree of conformity, but whethertheyarerelia-

ble individual differences is not yet established.

In one set of data from my lab (SID #3), in which 100 university students

were given 15 trials on 0, 1, 2, and 3 bits on each oftwo days,thetest-retest re-

liability of conformity to Hick’s Law was close to zero and completely

nonsignificant. It is as if nonconformity on any given test occasion were

merely due to momentaryerracticness or flukes in the course of the subject’s

performance,butat presentthis is sheer conjecture.In the above-mentioned

study, only one subject on one day showeda negative fit to Hick’s Law, that
is, a negative slope of RT on bits.

The greater the numberoftrials, in general, the closer do individuals’ data
fit Hick’s Law. Ten subjects given 15 trials on 9 different days showed a bet-
ter fit to Hick’s Law for the mean RToverall days than for anysingle day.

The flukes of nonconformity tend to average out with a larger number of
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FIGURE 5. Mean median RT(in msec) as a function of bits for 25 university students

(SID #2) on RT-MTapparatus under conditions requiring (a) a differential ballistic re-

sponse to the reaction stimulus (double response) and (b) simply removing index finger

from the “home” button whenthe reaction stimulus occurs but not being required to

make any movementto turn off the reaction stimulus (single response).

trials or test sessions. The present evidence doesnot rule out the possibility

that there are no true individual differences in degree of conformity to Hick’s

Law, and that all individuals will increasingly conform as a function of the

numberoftrials. Hence, varying degrees of nonconformity,rather than rep-

resenting a true or lawful individual differences phenomenon, maybejust a

matter of the unreliability of the median RTs, whichis a function of the num-

ber of measurements,or trials. Every one of the 10 subjects tested on 9 days

showeda better fit to Hick’s Law for the composite data overall days than

for the averagefit for each day. The meanfit(7) for single days was .934, SD

= ,036; for the composite, it was .976, SD = .018. A correlated ¢ test shows



INDIVIDUAL DIFFERENCES IN THE HICK PARADIGM 121

the difference to be highly significant (¢ = 5.93, df = 9, p < .001). Since the

reliability of each subject’s RT at each set size is greater for the composite

data than for the data on any one day,if some subjects truly were noncon-

formists while others were conformists to Hick’s Law, we should expect a

lowerindex of fit for some subjects in the most reliable composite data than

in the single-day data, and we should «also expect greater variance among the

subjects’ rs for the composite RT data than for the subjects’ meansof the rs

on single days. However, the data showjust the opposite of both of these out-

comes than would be expected if there werereliable individual differences in

degree of conformity to Hick’s Law that are not merely attributable to

unreliability of the RT measurements on anyparticularset size in any onetest

session with a limited numberoftrials. The variance of the index offit (r) is

significantly greater (F[9,9] = 4.33, p < .01) for the mean ofthe subjects’rs

over single days than their rs based on the composite data overall days. Be-

cause there were only 10 subjects (all of them university students) in this par-

ticular study, however,the results should be viewed as only suggestive rather

than conclusive. The hypothesis regarding true conformity to Hick’s Law by

certain individuals still remains to be rejected, if indeedit is false.

In any case, individual conformity to Hick’s Law is remarkably high, in

general, as indicated by the Pearson <orrelation of a person’s median RTs

with bits over set sizes. This index of fit was obtained for individuals in sev-

eral studies, with the results shown in Table 6. The mean valuesof r are all

quite high, averaging about .93. The s:juares of these 7s, of course, represent

the proportions of variance in mediar. RTs accountedfor bytheir linear re-

gression onbits, which, for individuals, is about .86.

To get someidea of the “types” of nonconformity to Hick’s Law that turn

up in a large sample, the RT data of 22:5 vocational college males (SID #12 &

13, in addition to 7 other Ss whose psychometric data were incomplete in #12

& 13 and were therefore omitted in certain other analyses) have been exam-

ined in termsof the rank order of the raedian RTs(based on 15 trials) at 0, 2,

and 3 bits. The predicted rank order of the median RTs would be 1-2-3, in ac-

cord with Hick’s Law. The percentag:: of individuals having different rank

orders of their median RTSfor 0, 2, and 3 bits is as follows:

 

Rank Order Percent

I 2 3 (Predicted) 77.78

1 3 2 13.33

2 1 3 4.00

2 3 1 0.89

3 1 2 0.89

3 2 1 0.89

1 2.5 2.5 2.22

1.5 1.5 3 0
 

100.00
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TABLE 6
Conformity of Individuals’ Median RTs to Hick’s Law as

Indexed by Correlation Between Median RT andBitsin
Five Independent Samples (N = 581)
 

 

Fit (r)

SID No. Group N Mean SD

1 Univ. students 50 .930 .099

6+ 7 Univ. students 105 .931 112

12 + 13 Vocational college students 225 .928 115

16 9th gradegirls 39 .944 .076

17 4th, 5th, 6th graders 162 .919 .161
 

Unweighted Mean .930 113

N-Weighted Mean .927 .123
 

The meanfit of individuals’s RTs to Hick’s Law for this sample is 7 = .928,

SD = .115.

Movement Time (MT) and Its Relation to RT

MTdisplays verylittle, if any, resemblance to RT. It would seem safe to say

that Hick’s Law applies exclusively to RT. This is one argument for measur-

ing RT and MTseparately rather than as a single amalgam,as has been done

in manystudies. Table 7 presents the mean median MTsas a function ofbits

in 21 studies. The slope of the regression of MT onbits averagesonlyslightly

more than 2 msec/bit, as compared with about 34 msec/bit for RT. Thereis

no appreciable conformity to Hick’s Law for MT, with the index of fit

averaging r = .35 andsix of the 21 studies even going counter to Hick’s Law

by negative slopes. The linear component in the trend of MT onbits, al-

though small, is nevertheless fully significant in these data, as seen in the

analysis of variance and trend analysis presented in Table 8. The eta squared

(n?), or the percentage of the total variance, showsthat the linear trend ofMT

on bits accountsfor only 0.3% of the total variance. The n? of Table 8 may be

compared with the corresponding values for RT in Table 4 as striking evi-

dence of the great dissimilarity between MT and RT. Figure 6 shows the

N-weighted meansof the MTsin 21 independent samples totalling 1573 sub-

jects. The regression equation for the straight line in Figure 6 for MT can be

compared with the corresponding equation for RT:

MT = 246 + 3(bits)

RT = 336 + 34(bits)

Thefact that the RT intercept averages 90 msec greater than the MTintercept

comes as a surprise to most people. In ourearly studies, we routinely asked
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TABLE7

Mean Median MT as a Function of Bits and Regression of MT on Bits in 21 Independent
Samples (N = 15783)

123

 

 

 

 

 

 

 

Bits Regression

SID No. Group N 0 I 2 3 Int. Slope r

1 University Students 50 215 203 209 223 #208 3.00 453

2 University Students 25 252 234 245 258 243 2.90 .363

3 University Students 100 243 227 239 256 234 5.10 551

4 University Males 50 233 216 226 247 223 5.20 515

5 University Females 50 254 239 252 264 246 4.30 540

6 University Males 57) -222)—S 203) 219) 218~—s215 0.40 .061

7 University Females 48 275 269 284 276 273 1.90 371

9 University Students 48 207 209 213 226 205 6.10 922

10 University Students 100 211 203 215 223 #206 4.80 .744

11 University Students SO 227 214 224 243 250 —-7.70 —.390

12 Vocational College 119 249 — 247 250 249 —.01 —.005

Whites

13 Vocational College 99 291 — 297 295 292 1.44 .819

Blacks

14 + 15 Vocational CollegeMales 106 213 209 217 217 2ii 1.97 .663

16 9th Grade Girls 39 187 190 198 206 185 6.50 .983

17 4th, Sth, 6th Graders 162 203 191 196 198 195  —-—1.00 —.260

18 High School Students 99 178 180 190 190 178 4.60 .927

19 Gifted 7th Graders 60 245 233 243 238 241 =+%—-1.10 —.264

20 Average 7th Graders 72 328 327 350 353 325 9.80 .909

23 Average 7th Graders 105 325 323 321 325 324 —-0.20 —.135

26 Retarded & Borderline 58 444 426 451 447 437 3.40 397

Adults

28 Elderly 76 321 311 318 318 317 -2.00 —.061

Unweighted Mean 253 242 255 261 251 2.44 386

N-Weighted Mean 251 240 253 257 249 2.17 351

TABLE8

Analysis of Variance and Trend Analysis of MT Data in Table 72

Source df Mean Squares F n* (x 100)

Studies (S) 18 16254.6 486.4* 98.5
Bits (B)

Linear Component 1 1060.8 31.7* 0.3
Nonlinear Component 2 849.4 25.4* 0.6

Residual (S x B) 54 33.4 0.6
 

“Two samples (SID #12, #13) from Table 7 did not have MTsat4 levels of
bits, and were therefore omitted to avoid emptycells in the ANOVA.

*o < .001.
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FIGURE 6. N-weighted mean median MTasa function ofbits, based on 21 independent

samples comprising a total of 1573 subjects.

subjects, after they were tested, whether theyfelt it took longer to get their

finger off the homebutton(i.e., RT) or, once they released the home button,

to moveit 6 inches to touch the button that turns off the light (i.e., MT).

Their subjective impression wasthat their MT wasconsiderably greater than

their RT; many,in fact, felt the RT wasvirtually instantaneouswith the onset

of the light, and they did not subjectively experience any lengthening of RT

with increasing set size. Obviously, Hick’s Law is not generally a consciously

or subjectively experienced phenomenon.

Correlation between RT and MT within subjects. Some experimental
psychologists have conjectured that some subjects maytry to improvetheir

RT and “defeat” Hick’s Law to some extent by adopting the strategy of

getting off the home button as soonas possible after the onset of the RS light

and “hovering”briefly to maketheir choice decision while moving toward the

button that turns out the light, thereby shifting some of the time for the deci-

sion process from RT to MT, which would havethe effect of decreasing RT

and increasing MT onanygiventrial. If this were a general strategy for any
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given subject, although not applied exactly equally on everytrial, one should

predict that the correlation (over trials) between the subject’s RT and MT

would becomeincreasingly negative with increasing bits of information,that

is, with increasing demandsontheprocess of decision or choice.
To examinethis strategy hypothesis, the RT and MTdata of three samples

(SID #6, #7, and #17), totalling 267 subjects, were correlated overtrials
within subjects for each set size. That is, for each subject on eachset size a
correlation (Pearson r) was obtained between the paired RTs and MTsover
trials. SID #6 and #7 (57 male and 48 female university students) had 15 trials
on set sizes 1, 2, 4, and 8. SID #17 (162 elementary school children in grades 4
to 6) had 30 trials onset sizes 1, 2, 4, 6, and 8. The meansofthe within-subject
correlations between RT and MTateachset size and their SDs are shown in
Table 9. The absenceofa single correlation in the whole table that even ap-
proaches significance means that we cannotreject the hypothesis that the
within-subjects correlation between RT and MTiszero.

One might argue, however, that only certain subjects adopt the strategy of
shifting some part of the time for the decision process from RT to MT, and
that their negative correlations between RT and MTare simply swamped and
obscured by the moreorless random correlations produced by the many sub-
jects who do not adoptthestrategy. If this were the case, we should expect
that the subjects who have adoptedthe strategy and produce negative RT x
MT correlations would do so with some consistencyacrossdifferentset sizes.
Thatis, for a given subject,if the strategy effect showed up as a negative RT
x MT correlationat onesetsize, there should be a greater-than-chance prob-
ability that a negative correlation would also show upat otherset sizes. The
consistency of negative or positive RT x MT correlations for subjects across
set sizes was tested in SID #6 (N = 57) by meansofa chi squared test on each

TABLE 9
MeanCorrelation for Three Independent Samples Between RT and MT OverTrials? Within

Subjects (N = 267)
 

  

 

 

SID #6 (N = 57) SID#7(N = 48) SID #17 (N = 162) Grand Mean

Set Size Meanr SDr Meanr SDr Meanr SDr Meanr SDr

1 + .057 .330 — .033 .338 + .008 .180 + .011 .283
2 — .007 .330 — .015 277 .000 .195 — .007 .267
4 — .087 .308 + .032 .326 + .024 .208 — .010 .281
6 = — — — — .007 .198 — .007 .198
8 — .009 .307 — .094 .269 — .037 .184 — .047 253

Grand — .012 .319 — .027 .302 — .002 .193 — .012 .256
Mean

 

“Numberoftrials at each level of bits: SID #6 = 15 trials, SID #7 = 15 trials, SID #17 = 30trials.
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2 xX 2 contingency table for the consistency of positive and negative correla-

tions across different adjacentset sizes (m), as follows:

   

  
 

         
   

n=2 n=4 n=8

—-r +r —r +r -r +r

+r 18 12 +r 16 8 : +r 15 6

n=1 n=2 n=4

—r 15 12 —/ 20 13 —r 20 16

x? = 0.11 x2 = 0.22 x= 1.41

¢= -.04 ¢ = —.06 ¢= —.16 eee

Noneofthe x? (1 df) values even approachessignificanceat the .05 level. The

phi coefficients (¢) maybe interpretedlike a correlation coefficient, showing

the consistencyorreliability of subjects’ tendency to produce positive or neg-

ative RT x MTcorrelations. The average value of ¢ is a nonsignificant

— .087. There is simply no evidence that individuals’ positive and negative

correlations between RT and MTat differentset sizes are anything other than

random fluctuation of the rs about the true correlation of zero.

The meaning of the significant and substantial positive correlation be-

tween individual differences in RT and MT(i.e., the between-subjects r) is

discussedin a later section.

Effects of Practice on Hick Parameters and S-R Compatibility

The literature on choice RT showsthat practice reduces choice RT andthat

the practice effect may even extend over as many as 45,000 trials (Teichner &

Krebs, 1974). The degree of practice effect seems to be most affected by the

degree of stimulus-response compatibility of the RT task. S-R compatibility

varies according to the degree of spatial proximity, correspondenceof order,

or other physical or relational similarity between the various choice reaction

stimuli and the differential responses that the subject must maketo the

stimuli. When the S-R compatibility is low, there is an increased effect of

practice. What apparently is influenced by practiceis the translation mecha-

nism between stimulus and response, and the extent of improvability of the

“translation” process is lessened as S-R compatibility is increased. As noted

previously, the RT-MT apparatususedin our studies comes near to maximiz-

ing S-R compatability by (a) the use of a home button, permitting the RT re-

sponse to be madefor different degrees of choice without the need forre-

sponse selection; and (b) the close proximity of the RS lights to the corre-

sponding pushbuttons, which minimizes confusion as to the movement

responsethe subject must maketo turn outthe light. It is probably because of
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these factors that the practice effects we are able to detect in our RT data are

of almost negligible magnitude, at least within the typical time frame of the

RT-MTtest — 15 to 30 trials.

The question of practice effect, or learning, is of theoretical importance

for the interpretation of the negative correlation between RT and IQ (orpsy-

chometric g) and the negative correlation between the slope of RT (onbits)

and IQ.If IQ reflects learning ability, and subjects are improving their RT

with practice at differential rates according to their learning ability, then it

would be learning ability rather than mental speed perse that is mainly the

basis for the RT-IQ correlation. If, on the other hand,practice effects on RT

appear to be minimal, an interpretation of the RT-IQ relationship in terms

of individual differences in learning ability is less tenable. Put most simply,if

practice effects, dependent on learning, were prominent, the path diagram

(below) on the left would seem likely interpretation of the RT-IQ correla-

tion, whereas, if practice effects are negligible, the diagram ontheright

would seem more warranted. (Arrows indicate causal relationship, curved

dashedlines indicate correlation without causation.)
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Hence, we must examinethe effects of practice on the key Hick parameters
derived from the samekind of RT data obtained under conditions typical of
those that have been found to show arelationship between the RT parameters
and IQ.

Table 10 shows the mean of the median RTsto thefirst three andlast three
of 15 trials in two studies. Also shown are the intercepts, slopes, and the r in-
dex of fit to Hick’s Law. In both samples, the mean RTsforthefirst andlast
three trials differ only slightly and nonsignificantly, and whatlittle difference
there is actually is the opposite to what would be expected in termsoflearn-
ing, Or improvement with practice. The intercept and slope parametersalso
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TABLE 10

Meansfor Two Samples of Median RTs(in Msec) on the First 3 Trials Compared to the Sameof the
Last 3 of 15 Trials

 

 

 

 

Bits

0 I 2 3 Intercept Slope r

SID #10

(N = 100)

First 3 Trials 312.8 + 8.63 342.5 + 10.3 360.4 + 11.0 389.3 + 10.5 314.1 24.7 .996

Last3 Trials 315.24 9.4 349.3 + 11.8 368.3 + 11.1 388.0 + 10.6 319.6 23.7 .989

SID #14 + #15

(N = 106)

First 3 Trials 309.0 + 8.2 348.3 + 9.1 368.3 + 11.2 393.8 + 9.7 313.7 27.5 .990

Last3 Trials 313.1 + 10.4 351.2 + 9.8 375.4 + 11.3 406.0 + 12.9 316.0 30.3 .996

 

aIndicates the 95% confidenceinterval,i.e., X + 1.984SEa
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show nopractice effects, and there is no appreciable effect on the degree of
fit to Hick’s Law.

Figure 7 (based on SID #12) showstheeffects of practice on RT and MT
over 30 trials. Practice effects should be approximately equal for odd- and
even-numberedtrials. These are shownin the left-hand panel of Figure 7. As
expected, the results for odd and eventrials barely differ. On the other hand,
whatever practice effects occur in the course of30 trials should be expected to
Show upas a difference between the meansofthefirst set of 15 trials (i.e.,
trials 1-15) and the secondsetof 15 trials (i.e., trials 16-30). This comparison
is shownin the right-hand panel of Figure 7. Theresults are statistically indis-
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tinguishable from those in the comparison of odd and even trials. Hence,

there is no evidence ofa practice effect. The main Hick parameters of the RT

data in Figure 7 are seen in Table 11; they also show no practice effects.

Doespractice on two different days one or two days apart havean effect on

RTintercept, slope, and fit? Table 12 showsthe results in combined SIDs#3,

#4, and #5. The RTintercept, althoughless by only about 6 msec onthesec-

ond set of 15 trials, differs significantly at the .05 level. The difference in

slopeis in the theoretically unexpected direction, andis statistically negligi-

ble. Note that the Day 1 x Day 2 correlation is much higher for the intercept

than the slope; the 7:2 is an estimate of the retest reliability of these parame-

ters. One can hardly make muchofthe significant 6-msec Day 1-Day2 dif-

ference in intercepts. Another study SID #11, N = 50), in which subjects

were also tested with 15 trials in each of two sessions on different days less

than a week apart, showed nonsignificant (¢ < 1) differences on bothinter-

cept and slope. The regressions of RT on bits were as follows:

Day 1: 306.47 + 26.96(bits), m = .989
Day 2: 303.23 + 23.89(bits), r = .996

Does prolonged practice beyond twosessions on separate days produce

larger effects? To find out, 10 university students (SID #8) were given 15

trials in each of nine test sessions on alternate weekdays; the testing was

spread over 3 to 4 weeks. The mean intercept of the median RT on bits is

plotted across days of practice in Figure 8. There is evidence of a slight but

significant practice effect. An ANOVAperformed onthese data showedthe

Days maineffect to be significant, F(8,72) = 3.53, p < .01. (For Subjects,

F{9,72] = 16.55, p < .001. Eta squared [ x 100] for Days is 11.33%; for Sub-

jects, 59.77%. The average single-sessionreliability of individual differences

in the intercept in this sample is .63; the composite data over all 9 days has an

interceptreliability of .94.) The largest difference is Day 1-Day 8 (¢ = 2.74, p

< .05), amounting to 29 msec. Butthis effect lies far outside the typical time

frame of the RT data of most of the studies that have reported correlations

between RT parameters and IQ. Even the difference of 12 msec between

TABLE11

Regressions of RT on Bits and Index of Fit (r)
to Hick’s Law for Conditions in Figure 7
 

 

Condition Intercept Slope Fit (r)

Odd Trials 353.5 27.9 .997

EvenTrials 347.5 30.1 .999

First 15 Trials 352.5 26.8 .994

Second 15 Trials 348.4 31.1 1.000
 

Mean 350.5 29.0 .998
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TABLE 12
MeanIntercept and Slope of Regression of RT on
Bits (0, 1, 2, 3) in Sessions of 15 Trials Each on

Two Days (N = 200)
 

 

 

Occasion Intercept Slope Fit (r)

Day1 300.2 + 4.7? 25.6 + 1.5 .998
Day 2 294.3 + 4.3 26.6 + 1.4 .980

Correlation, r;2 + .721 + .341
 

“Indicates 95% confidence interval, i.e., X + 1.96SE¢

Days 1 and2 is nonsignificant at the .05 level by a 1-tailed test (correlated ¢ =
1.55). The significance of the Days effect shown by the ANOVAis attributa-
ble entirely to the difference between the meansofthefirst 2 days and the
mean ofthe last 7 days; there are no significant differences within each of
these two sets. The average linear decrement in RT intercept overall 9 days of
practice is only 2 msecper day.
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Figure 9 showsthe meanslopeofthe regression of RT onbits across 9 days

of practice. Again, the difference between the first 2 days is nonsignificant

(correlated t = 1.45), but the overall differences acrossall 9 days are signifi-

cant, F(8,72) = 2.21, p < .05. The average linear decrement in slope across

all 9 days of practice amounts to only 0.45 msec per day. (Eta squared [x

100] for Daysis 13.87%; for Subjects, 29.63%. The average single-session re-

liability of individual differences in the slope measure in this sample is only

.26; the composite data overall 9 days has a slope reliability of .76.)

All of these data point to the conclusion that practice effects on RT are nil

with the present apparatus and procedure,atleast within the numberoftrials

used in the studies of the relation of RT parameters to IQ. Since practice ef-

fects across trials within each set size are nil, it is so highly improbable that

practice effects would transfer across set sizes that, so far, we have not per-
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formed a direct experimental test for such an effect by varying the order of

administering the different set sizes. It is desirable in any one study of indi-

vidual differences to maintain uniform conditionsof testing for all subjects,

and it has not seemed worthsacrificing this advantageto test the exceedingly

small probability that there is greater positive transfer of practice between

sets than within sets. There is no theory or rationale that would predict this

unlikely possibility. Moreover, positive transfer between sets would have the

effect of distorting the fit of the RT data to Hick’s Law, making the increase

in RT as a function of bits a negatively accelerated function rather than the

perfectly linear function that is actually found.

Effects of Position-Response Preferences on RT

Somerelatively small part (averaging about 30 msec for university students)

of a person’s total RT on anygiven trial appearsto be attributable to the time

required to program the ballistic movement response prior to the subject’s

removing his or her finger from the home button. If there are differential

preferences or response tendencies for different light/button positions, this

variable increment in RT attributable to programming the movementre-

sponse would constitute a part of the subject’s error variance. However,since

there are 15 or moretrials at each set size and every light/button position is

targeted an equal numberoftrials (+1), these variable increments in RT

would tend to average out with an increasing numberoftrials. Therefore,

they should constitute no real problem for the measurementofindividual dif-

ferences in RT. Any such responsebiases,if they in fact exist and affect RT,

would mostlikely attenuate correlations between RT and IQ.

To determine if there are any general or average position biases, the mean

RT has been determinedfor each ofthe eightlight/button positions for a to-

tal of 309 vocational college men (combined Samples #12, #14, #15). The re-

sults are shownin Figure 10. Althoughthereis no clearly discernible pattern,

andthe largest difference is only 20 msec, the differences overall are signifi-

cant with such a large sample. The percentage of the total variance (eta

Squared) accounted for by the main effect of Positions is only 1%. Eta

squared for Subjects (i.e., individual differences in overall mean RT on set

size 8) is 80%. The eta squared for the Subjects x Positions interactionis

19%. This variance dueto individualposition biasesis largely averaged out in

the mean,since the various positions of the RS occur with nearly equal fre-

quency. Whatever small proportion of this variance that would get into the

individual difference between subjects’ mean RTsat a given set size would

constitute part of the measurementerror, and could only attenuate correla-

tions between RT and psychometric test scores.
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RTo;; Intraindividual Variability in RT

Intraindividual variability in RT, henceforth symbolized as RTo;, is quan-

tified as the average of the standard deviations of an individual’s RTs over a

given numberoftrials at each set size. Experimental psychologists studying

RT havepaid peculiarlylittle attention to intraindividual variability in RT.

This variable becameofinterest early in our RT research, whenit was discov-

ered that there are reliable individual differences in RTo; and that these often

showed a higher correlation with IQ than the RTitself. It also seemed a

reasonable hypothesis that RTo; is a more fundamental variable than the

mean or median RT. That is, one can explain how individual differences in

the mean RT could betheresult of individual differences in RTo, moreeasily

than one can explain the reverse.If there is a lowerlimit(the so-called “physi-

ological limit”) to the shortest RT that a person can perform, and if persons

differ relatively little in their shortest possible RTs, then individual differ-

ences in the spread of RTs abovethis lowerlimit will create individual differ-

ences in the measures of the central tendency of the RTs. Hence, the main

source of individual differences in RT could arise, not from anybasic neural

processes that differ in speed of execution, but from differences in the

moment-to-momentprobability of occurrence of certain processes —an in-

termittency or oscillation of response potential that would makefortrial-to-

trial variation in RT.
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The average correlation between median RT and RTo, in most studiesis

about + .6, but the true correlation is greatly attenuated by the rather lowre-

liability of RTo;. We have not obtainedretest reliability coefficients of RTo;

higher than .6. (In one large study [SID 43, 100 university students], the retest

reliability of RTo, was only + .422.) Hence, if the correlation between me-

dian RT and RTo; were corrected for attenuation, it could conceivably even

be close to 1. The two measures thus would be redundant, at least when based

on the same set of RT data. However, in order to find out whether median

RT and RTo, actually reflect the sameor different individual differences,it is

necessary to determine the correlation between them on experimentally inde-

pendentsets of data. This was done by Paul (1984, pp. 60-61), with SID #11

(50 university students). The individuals’ median RTs obtained in one test

session (Day 1) were correlated with RTo, obtained in another test session

(Day 2), and vice versa. The two correlations between the experimentally in-

dependent measures of median RT and RTo, were averaged and then cor-

rected for attenuation of each variable. The raw correlation was only + .33;

corrected for attenuation it was + .67. Exactly the same kind of analysis was

done on SID #9 (48 university students); the disattenuated correlation be-

tween median RT and RTo; was + .61. These studies suggest that, in the Hick

paradigm, median RT and RTo,share only about two thirdsof their variance

in common.

In any case, what we now know with considerable certainty about RTs,

with respect to Hick’s Law is that it behaves very differently from the median

RT. RTo; is a linear function, not of log n, but of 7 itself. Table 13 shows

RTo; as a function of set size (m) in 18 independent samplestotalling 1402

subjects. The average fit of RTo, to a linear function of nis .94. (Thefit to the

composite data ofall 18 studies is .99.) When RTo; is regressed on bits, how-

ever, the averagefit is only .86 (.91 for the composite data). Thus RTo; shows

almost as gooda linear fit to n as median RT showsto log n. Thelinearrela-

tionship can be seen moreclearly in Figure 11. As far as I can determine,this

empirical relationship has not been mentioned elsewherein the RTliterature,

except in Jensen (1982a, p. 104). An ANOVAtrend analysis of the data in

Table 13 shows a highly significant (F[1,42] = 15.93, p < .001) linear
trend of the mean RTo, on n; the nonlinear componentofthe varianceis non-

significant (F[2,42] = 0.12). Eta squared (x 100) for the different sources of

variance are: Between Studies, 59.4%; Linear component ofthe regression

of RTo, on x7, 11.1%; Nonlinear component, 0.6%; Residual, 29.3%.

The mean values of RTo; (averaged overset sizes) and their standard devia-

tions in 29 independent samples (N = 1812) are shownin Table 14.

The outstandingly puzzling feature in Table 14. is that the values of RTo;in

twoofthe three groups in SID #29 (Nettelbeck & Kirby, 1983) appear surpris-

ingly large for SID #29A and #29U, in comparison to RTo,in other similar
groups. One may wonderif Nettelbeck and Kirby calculated RTo, dif-
ferently, but, according to their article (p. 43), it was calculated by the same
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TABLE13

MeanIntraindividual Variability (RTo,) in RT as a Function of Set Size (n) and Regression of
RTo; on nin 18 Independent Samples (N = 1402)
 

 

 

Regression ofRTo;

Set Size (n) (in Msec.) onn

SID No. Group N 1 2 4 8 Int. Slope r

1 University Students 50 29 34 33 44 28.2 1.88 953

2 University Students 25 32 33 40 57 26.9 3.62 .990

3 University Students 100 37 37 67 66 34.7 4.61 .831

6+ 7 University Students 105 32 32 41 52 28.0 2.98 991

9 University Students 48 35 42 47 61 33.0 3.52 991

10 University Students 100 35 36 40 53 31.1 2.69 .983

11 University Students 50 37 35 38 48 33.1 1.71 .954

12 Vocational College 119 45 — 48 64 40.8 2.73 .958

Whites

13 Vocational College 99 54 — 61 83 47.9 4.17 .973

Blacks

17 4th, 5th, 6th Graders 162 43 52 60 87 37.1 6.25 995

18 High School Students 99 33 36 40 61 27.2 4.11 .984

19 Gifted 7th Graders 60 34 36 48 78 24.8 6.48 .993

20 Average 7th Graders 72 82 71 83 118 65.8 6.03 .914

21 Gifted 9th Graders 76 35 35 43 — 31.0 2.73 .930

23 Average 7th Graders 105 80 73 76 ——%6 70.9 2.76 .833

25 Retarded Adults 46 93 120 227 400 41.7 44.87 .998

30 Average Adults 40 47 43 42 85 32.5 5.76 .866

31 Average Adults 46 54 47 46 71 43.2 2.98 .778
 

Unweighted Mean 46.5 47.6 60.0 89.7 37.7 6.10 .940

N-Weighted Mean 46.3 47.3 58.2 83.5 38.8 5.27 943
 

method used in Jensen’s studies. This striking discrepancy remains un-

explained.!

 

‘Nettelback (personal communication, May 29, 1986) has informed methat the values of RT and

MTin SID #29 werein fact calculated differently from the calculation used in the other studies

listed in Table 14, due to a misconception of Jensen’s method, which was misleadingly described

in Jensen (1983) as the “root mean square of the variances amongtrials within bits” (p. 111),

whereas Jensen’s method is properly described as the square root of the mean of the variances

over trials within bits. The results in SID #29 as calculated by Jensen’s method, however,differ

only slightly from the method used by Nettelbeck and Kirby (1983). Nettelbeck has provided the

values obtained by Jensen’s methodofcalculation, as follows:

RTo; MTo;

 

Mean SD Mean SD
 

Handicapped workers 297 94 115 59

Apprentices 91 20 77 25

University Students 121 61 87 52
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on 18 independent samples comprising a total of 1402 subjects. Thefit of the data points
to the linear function is 7 = .990 for the unweighted and .991 for the N-weighted means.

Random Natureof Intraindividual Variability in RT AcrossTrials

If, for a given set size (m) there are (a) reliable individual differences in the
central tendency (mean or median) and intraindividual variability of RTs
overtrials, and if there were (b) no learning or other systematic changes in RT
acrosstrials, and if (c) any given subject’s RT on anysingletrial were purely
random deviation (with a standard deviation o, over trials for the given sub-
ject) from the subject’s own mean RTacrossall trials, then the coexistence of
only these three conditions would be sufficient to result in a matrix of
covariances of RTs between trials over N number of subjects that would
necessarily show the following two features: (a) it would be a significant
matrix— thatis, the average covariance would begreater than zero (because
there arereliable individual differences in RT); and (b) the ¢rue covariances
would be homogenous, and the variation between all of the obtained
covariancesin the matrix would constitute merely chance deviations from the
constanttrue covariance, due to the randomnessofevery subject’s RT on ev-

 

The remaining discrepancy from otherstudies maybe atleast partially explained bythe fact that
individuals’ distributions of RTs and MTswere not Winsorized to eliminate outliers, as was done
in most of the other studies. Nettelbeck remarks that there were “occasional very long and very
short responses.”
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TABLE 14

Mean and Standard Deviation of Intraindividual Variability (in Msec.) in RT
in 29 Independent Samples (N = 1812)
 

 

SID No. Group N Mean SD

1 University Students 50 35.23 8.91

2 University Students 25 40.46 10.74

3 University Students 100 26.84 7.88

4 University Males 50 25.77 7.51

5 University Females 50 27.90 8.16

6 University Males 57 35.30 16.07

7 University Females 48 43.69 20.21

10 University Students 100 41.20 13.61

11 University Students 50 39.45 15.45

12 Vocational College Whites 119 52.62 26.67

13 Vocational College Blacks 99 65.99 34.11

14 Vocational College Whites 56 47.45 16.15

15 Vocational College Blacks 50 41.85 13.05

16 Oth gradegirls 39 35.32 11.80

17 4th, 5th, 6th graders 162 63.35 27.07

18HC High School Hearing Children 37 59.23 21.95

18HP High School Deaf Children of Hearing Parents 31 62.47 25.47

18DP High School Deaf Children of Deaf Parents 31 52.73 12.57

19 Gifted 7th Graders 60 26.47 12.80

20 Average 7th Graders 72 88.71 27.64

21 Gifted 9th Graders 76 37.36 14.52

25 Retarded Adults 46 219.80 102.10

27 Severely Retarded Adults 60 235.16 220.09

28 Elderly 76 59.19 28.27

29H Handicapped Workers 41 337.00 —

29A Apprentices 82 102.00 —

29U University Students 59 122.00 —

30 Average Adults 40 54.10 15.80

31 Average Adults 46 54.35 15.61
 

ery trial. A test of this set of conditions is provided bya statistical test of the

hypothesis that all of the observed covariances are merely chance sampling

deviations from a single true covariance.A statistical test of this null hypoth-

esis is provided by Lawley (1963) in the form of a likelihoodratiostatistic, J;

the value — 2 log / closely approximatesa chi squaredistribution with [n(n +

1)/2] — 2 degrees of freedom, where 7 is the numberofvariables(in this case,

numberoftrials). This statistical test was applied to the 10 x 10 variance-

covariance matrix oftrials 6 through 15 (out of a total of 15 trials) on the RT

data ofset sizes 1 and 8 for 100 university students (SID #3) tested on two oc-

casions separated by 1 or 2 days. Forneitherset size 1 nor 8, on neither day,

could the null hypothesis be rejected; the overall differences between the

covariances among the RTsoneverytrial are far from significant. This find-

ing is consistent with the hypothesis that, for a given subject, at a given set
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size, the RT on eachtrial is a random selection from the subject’s total “popu-

lation” of potential RTs, with the mean andstandard deviation of RT as pa-

rametersofthe given subject. The fact that the average correlation of RTs be-

tween trials is about 0.4 only indicates that there are reliable individual

differences between subjects’ mean RTs. Whenlearning or other systematic

change in performancetakes place over a numberoftrials, as in laboratory

learning experiments, the pattern of trial-to-trial correlations or covariances

between the performance measures generally produces whatis termed a sim-

plex pattern, that is, the covariances between the performance measures on

different trials decrease regularly the further apart the trials are. RT data,

however, do not show eventheslightest resemblance to the simplex pattern.

Correlations Between RTs Across Set Sizes

Another phenomenon,perhapsas lawful as Hick’s lawitself, is the simplex

pattern of correlations between median RTsat everyset size. Since SID #17

(162 elementary school children) is large and was given a larger number of

different set sizes (” = 1, 2, 4, 6, 8) than other samples, with 30 trials at each

set size, thereby making for somewhat higherreliability of individuals’ me-

dian RTsat each set size, it can serve well to illustrate this “corollary” of

Hick’s Law. Table 15 shows the intercorrelations between median RTsof

different set sizes; the correlation coefficients above the diagonal are cor-

rected for attenuation, using the Spearman-Brownboosted split-half (odd-

even trials) internal consistency reliability coefficient. It can be seen that the

hierarchical pattern of correlations comesstrikingly close to a perfect sim-

plex. This is more especially true of the disattenuated correlations shown

abovethe diagonal.

A perfect simplex pattern of correlations can be generated by what is

termed an overlap model, which is based on the idea of overlapping or com-

TABLE 15

Correlations? Between Median RTsfor Different Set

Sizes Based on Sample #17(N = 162)
 

Set Size I 2 4 6 &
 

1 .90 .80 .76 72
  

  

   
2 .86 .80 .80 |

4 76 .86 .96

6 70 74

8 67 72
 

“Correlations above diagonal are corrected for at-

tenuation.
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mon elements between variables. It is best to think of this, not in terms of

common elements in any real sense, but simply in terms of overlapping or

shared variance, whatever the source of variance may be. The overlap model

predicts the relative magnitudesof the correlations between differentset sizes

as follows. Designate any twoset sizes as n, and n,, where n, < n,; that is, n, is

a subset of n,. Then ,/n, is the proportion oftheset n, that is shared with the
set n,. Thought of in correlational terms, n,/n, is the proportion of variance

in n, that is predicted by n,, and the correlation between n, and n,, therefore,

is the square rootoftheir ratio,that is, /n,/n,. For example, the correlation

betweenset size 1 andset size 2isr;2 = 1/2 = .71; between | and 4isr;4 =
J1/4 = .50;ri¢6 = V1/6 = .41, and so on. The matrix of correlations gener-
ated by this model is shown in Table 16, below the diagonal. This matrix is a

perfect simplex. How closely do the actual correlations in Table 15 fit the

simplex correlations in Table 16? An index offit (7) is the correlation be-

tween the 10 actual rs and their corresponding theoretical rs. For the raw cor-

relations, the fit (7) is .974; for the disattenuated correlations, thefit is .997.

This is a remarkably high degree of fit between the pattern of the actual cor-

relations and the simplex pattern generated by the overlap model. The two

sets of correlations differ in absolute size, but this feature is unessential to the

model. A linear transformation can be used on the theoreticalrs to give them

the same meanandvariance as the disattenuated obtained rs, and suchtrans-

formed theoretical 7s are shown abovethe diagonal in Table 16, for compari-

son with the actual disattenuated rs above the diagonal in Table 15.

The close fit of the correlations to the simplex model is a natural conse-

quence of two features of the RT data:(a) the increase in RTas a function of

set size, and (b) a considerable degree of independenceof individual differ-

TABLE16

Theoretical Correlations? Between Set Sizes

Derived from the Overlap Model
 

Set Size I 2 4 6 8
 

90 79 74 71
  

  

     

    

2 71 90 83 19

4 50 71 .96 .90

6 Al 38

8 35 50 71 87
 

4Correlations below the diagonal are directly derived

from overlap model. Correlations above the diagonal area

linear transformation of these, to give them the same mean

and variance as the disattenuated correlations for the ac-

tual data shown in Table 15.
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encesin the intercept and slope of this function. These two conditions alone

are sufficient to create the observed simplex. Table 17 showsthe correlations

between RTsatset sizes 1, 2, 4, and 8 for all the samples for which thesecor-

relations are available, along with the indexoffit (r) to the correlations pre-

dicted by the overlap model. The averagefit over the separate samplesis .893

(unweighted rs) and .898 (N-weighted rs), but the fit to the composite mean

correlations (i.e., the bottom two rows in Table 17) is .962 (unweighted

means) and .958 (N-weighted means). The fact that the degree of fit to the

overall meansis higher than the meanfit of the separate samplessuggests that

the patterns of correlations in the various samples are all approximations to

the simplex model, but are attenuated by measurementerror and sampling
error.

Correlations Between Hick Parameters

The correlations between various Hick parameters are of concern when one

considersthe selection of two or more parametersto be entered into a multi-

ple regression equation for the prediction of IQ or other psychometricscores.
The optimal equation, of course, is one in which each ofthe predictorvaria-
bles is significantly correlated with the criterion variable (e.g., IQ) and in

TABLE17
Correlation Coefficient (Decimal Omitted) Between RTsat Each Set Size (n = 1, 2, 3, 4, 8)in

11 Independent Samples (N = 941)
 

RTI RTI RTI RT2°> RT2- RT4~ #Fitto

 

x x x x x x Model
SID No. Group N  RT2 RT4 =RT8 =\kRT4 %RT8 RTS r

1 University Students 50 829 718 558 788 553 675 .775
6 University Students 57

=

869 761 644 842 786 818 .934
7 University Females 48 788 741 689 897 783 869 .870
10 University Students 100 812 779 693 924 845 891 .943
11 University Students 50

=

863 733 735 901 853 911 854
12 Vocational College 119 804 732 869 .992

Whites

13 Vocational College 99 646 507 745 .981
Blacks

16 9th GradeGirls 39

=

874 779 693 930 814 877 .956
17 4th, Sth, 6th Graders 162 861 758 675 857 716 843 .981
18 High School Students 99

=

=837 768 651 901 737 853 .964
19+ 20 Gifted & Average 7th 118 769 850 641 886 762 757 570

Graders

 

N 723 941 941 723 723 941
Unweighted Mean 833 758 656 881 761 828 .962
N-Weighted Mean 830 763 656 881 758 827 .958
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which the correlations between the predictor variables are low, thereby

minimizing their redundancy. The correlations between the Hick parameters

that have been most frequently calculated in previousstudies are collected in

Table 18. All of the N-weighted meancorrelations larger than .07 are signifi-

cant beyondthe .01 level (2-tailed). The correlations are also shown corrected

for restriction of range and attenuation, in the last two rows of Table 18.

These corrected values give a somewhat better idea of the degree of redun-

dancy betweenpairs of variables. The corrections are probably overly con-

servative and, if anything, underestimate the true correlations in the general

population. All of the samples in Table 18 are restricted in range of IQ. In

nearly every sample, the degree of restriction amounts to more than 50%of

the variance in the general population. Correction of the RT correlations for

range assumesthat the variance of the RT variables is reduced by 5%, due to

incidental restriction of the samples on IQ, assuming the IQ varianceis re-

duced 50% and that IQ accounts for 10%of the variance in the RT variable.

Based on these reasonable and empirically based average estimates, the cor-

relation corrected for restriction of range can be calculated from Formula 8

in Gulliksen (1950, p. 133). Correction for attenuation is conservatively

based on assuming aninternal consistencyreliability of .90 forall variables.

Intercept x slope correlation. One correlation between Hick parame-

ters, the correlation between RT intercept and slope (RTa x RTD),calls for

special comment, in view of the fact that some theoretical importance has

been claimed for this particular correlation, which, as can be seen in Table

18, is the only negative correlation between any of the Hick parameters. The

observed negative correlation between intercept and slope has been inter-

preted as evidence that something other than a general speed factoris in-

volved in Hick performance, and that a different strategy for minimizing RT

is adopted in responding to a small numberofalternatives (or bits of infor-

mation) from that used in respondingto a larger numberofalternatives. For

example, Nettelbeck and Kirby (1983) make quite an important point of the

negative intercept x slope correlation, as follows:

There are aspects to these data which are concordantwith the possibility that

certain strategies for responding have influenced outcome.In thefirst place,

the strong negative correlations between the slope andintercept of regression

functions for DT [i.e., RT] and MT within all three groups raise doubts about

whether the regression of RT onbits can reliably distinguish rate of processing

from fundamental delays in the subject’s response system, as Hick’s Law pro-

poses. If it were the case that both variables were interacting with a third, like

intelligence, then one would expect apositive correlation between slope and in-

tercept. The negative relationship suggests instead that some subjects have ap-

plied different criteria for responding at different levels of choice. Oneplausi-

ble possibility is that some responses have been disproportionately more

carefully made wheneight stimulusalternatives were involved, although other
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TABLE 18
Correlation Coefficients (Decimals Omitted) Between Various Parameters? of the Hick Paradigm

in 16 Independent Samples (N = 1199)
 

 

 

 

 

RT RT RT RT RTa RTa RTa RTb RTb_~ RTo,

x x x x x x x x x x
SID No. Group N RTa RTb RTo, MT RTb RTs, MT RTo, MT MT

1 University Students 50 —29 18 25 42 31 12
2 University Students 25 83 — 23 39 53 —72 21 54 25 — 25 53
3 University Students 100 01 47 35 41 — 08 33
4 University Males 50 09 50 34 36 — 23 33
5 University Females 50 —11 43 35 50 11 29
6 University Males 57 — 00 42 —01
7 University Females 48 30 56 02
10 University Students 100 92 33 55 55 — 07 43 57 36 03 24
12 Vocational College Whites 119 61 57

13 Vocational College Blacks 99 53 57
12 + 13 Vocational College Students 218 50 70 53 43 18 44
16 9th Grade Girls 39 48 37
17 4th, Sth, 6th Graders 162 03 32
18 High School Students 99 47 49 41
22 Average 9th Graders 20 83 61
23 Average 7th Graders 105 18 73 35 33 — 06 32
28 Elderly 76 64

Unweighted Mean 877 277 593 516 —151 371 401 382 032 335

N-Weighted Mean 902 321 619 507 — 064 403 407 394 087 349

Total N 125 553 606 787 537 375 375 698 965 797

Corrected for Range and Attenuation

Unweighted Mean 976 374 679 601 —277 460 488 470 226 426

N-Weighted Mean 1000 413 707 593 — 234 491 494 482 243 439
 

*RT—Mean median RT.
RTa-— Intercept of regression of RT onbits.

RTb—Slope of regression of RT onbits.

RTo,— Intraindividual variability in RT overtrials.
MT—Mean MT.
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explanations are equally viable. The important consideration hereis that strate-

gies of this kind could increase the slope while decreasing the interceptofthe re-

gression function. (pp. 49-50, emphasis added)

And elsewhere, Nettlebeck (1985) states:

Roth (1964) also reports a significant correlation of — .41 between the slope and

the intercept of the regression function. This outcome, whichis inconsistent

with a speed modelofintelligence, has been confirmed by Nettelbeck and Kirby

(1983). It suggests that subjects apply different criteria for respondingat differ-

ent levels of choice. (p. 235)

The observed negative correlation between intercept and slope, however,is

an unsoundbasis for any such theorizing as is displayed in the above quotes,

because the negative correlation is merely a mathematical artifact arising

necessarily from the fact that, when intercept and slope are calculated on the

same set of data, they both share the same measurementerrors, which are

negatively correlated in the two parameters. Thatis, the very sameerrorsthat

increase the slope also necessarily decrease the intercept, and vice versa. The

correlation between intercept (a) and slope (b) due solely to their shareder-

rors of measurementis provided by the following formula (from Marascuilo

& Levin, 1983, p. 161):

—X

LX?

N

where X is the values on the abscissa(in this case, bits) and Nis the number of

bivariate data points that enter into the computation of the regression of the

ordinate values on the abscissa values(in this case, the regression of median

RT onbits). With 0, 1, 2, 3 bits, as typically used in most studies, r,, = — .80.

Hence the true, or error-free, correlation between intercept and slopeis

bound to be obscured or even reversed in sign by this large negative correla-

tion between their errors of measurement.

Since errors of measurement tend to be averaged out in the group mean

when the numberof subjects is large, it should be instructive to look at the

correlation between intercept and slope based on group means. The meanin-

tercepts and meanslopes of the 27 independent samples in Table 3 are posi-

tively correlated, Pearson r = +.71, Spearman rank-order correlation =

+ .55. The correlation between the mean intercepts and meanslopes of Table

22, is + .42. Hence, it appears that the true correlation between intercept and

slope is a positive correlation, probably of substantial magnitude.

The true correlation between intercept and slope based on individuals

lon =
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within a given sample can be properly determined only by obtaining the two

parameters from two experimentally independentsets of data (so that errors

will be uncorrelated), and then correcting the correlation for attenuation

based onthereliability of each parameter. This has been done in twolarge

samples, each given 30 trials, divided into sets of 15 odd- or even-numbered

trials. The odd and eventrials, being experimentally independent, have

uncorrelated errors of measurement. SID #17 (N = 162) gives the following

correlations:

 

 

    

Even

Intercept Slope

Intercept .910 — .037
Odd

Slope — .027 .724

Oddintercept x odd slope, r = —.210

Even intercept x even slope, r = —.109

The meancorrelation between odd and even intercepts x slopes is (— .027 +

— .037)/2 = —.032. The correction for attenuation term based on the

reliabilities (for 15 trials) is V/(.910) (.724) = .812. So the correlation of

— .032 corrected for attenuation is — .039, whichis the best estimate of the

true correlation between individual measures of intercept and slopein this

sample. This correlation, with 160 df, does not differ significantly from zero

(t < 1).

Combined SID #12 and #13 (total N = 218) give the following correla-

tions:

 

 

    

Even

Intercept Slope

Odd Intercept .866 — .078

Slope — .139 721

Odd intercept x odd slope, r = — .255

Even intercept x even slope, r = — .248

The meancorrelation between odd and even intercepts x slopes is (— .139 +

— .078)/2 = —.109, whichis not significantly different from zero (t = 1.62,

p < .10). Thé correction for attenuation term based onthereliabilities (for 15

trials) is ./(.866) (.721) = .790. So the correlation of —.109 correctedforat-
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tenuation is —.138. This disattenuated correlation, with 216 df, is also

nonsignificant (f = 1.62, p < .10). (Significance tests of disattenuated corre-

lations are explicated by Forsyth & Feldt, 1969.) These two studies raise the

question of whetherthere is a zero correlation or a positive correlation be-

tween slope, as was found when meanintercepts and slopes were correlated.

The two types of correlations seem to yield different answers to the question.

In anycase,it is important to note that the correlations between intercept and

slope based on experimentally independent sets of data are considerably

smaller than the correlations based on one and the samesetof data. Clearly,

a large part of the negative correlation generally found betweenintercept and

slope is attributable to the artifact resulting from their correlated errors of

measurement. To date, there is no evidence of a significant negative correla-

tion between true-score measurementsof intercept and slope.

Reliability of Hick Parameters

Internal consistency reliability coefficients based on split-half (odd-even

trials) within single test sessions have been determined in five independent

studies (total N = 550). (One of these is Cronbach’s coefficient alpha, which

is the same as the meanofall possible split-half reliabilities.) Test-retest relia-

bility coefficients based on test sessions on separate occasions two or three

days apart have been determinedin six independentstudies (total N = 290).

(The reliability of every Hick parameter was not determinedin every study.)

The reliability coefficients are shown in Table 19. The internal consistency

(split-half) reliability is always higher than the retest reliability, and both

types of reliability coefficients are generally higher for MT than for RT. RT

slope has the lowestretest reliability of any parameter, and RTo,is hardly bet-

ter. Yet the split-half reliability of these parametersis generally satisfactory.

But individual differences in RT slope and RTo,are very unstable from one

day to the next. This fact, of course, greatly attenuates the correlations of

these parameters with any othervariables. Their reliability can be raised by —

averaging the data from repeated tests given on as many days as required to

achievea satisfactory level of reliability, but this is usually unfeasible for any

practical purposes. Considering therelatively low reliability of RTo,, its cor-

relations with psychometric g are higher, on average, than the correlations

for any other of the Hick parameters. This fact would seem to suggesta cer-

tain primacyto the RTo; variable, as if intraindividual variability in RT were

the basic source of the correlationsof all other Hick parameters with g. Indi-

vidual differences in all the other Hick RT parameters might be interpretable

as merely derivatives of individual differences in intraindividualvariability.

The odd-even split-half reliability (Spearman-Brown boosted) of RT and
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TABLE 19
Reliability Coefficients (Decimals Omitted) of RT and MT Variables

Reaction Time Movement Time

SID No. N Reliability Mean* (Intercept Slope RTo, Mean MTo,

3 100  Split-half® 97 75 65 96 81
3 100 Retest° 72 35 42 84 56
4 50 Retest° 73 50 48 89 56

5 50 Retest° 71 16 35 87 52
8 10 Split-half 97 96 89 72 99 64
8 10 Retest® 82 72 16 07 94 37

11 50 Retest“ 49

12+ 13 218 Split-half® 93 84 91

17 162  Split-half® 95 84 16

21 60  Cronbach’s Alpha‘ 93 68°
21 30  Retest° 84 59

N-Weighted X Split-half 94 95 81 66 87 —s«79
N-Weighted X Retest 84 72 39 40 86 54
 

4Mean of median RTsat eachsetsize.
bSplit-half reliability is always odd-eventrials, and boosted by the Spearman-Brownformula.

°Test-retest reliability based on correlation between test sessions 2 or 3 days apart (not boosted by

Spearman-Brown formula).

dBased on average correlation betweentest sessions 2 or 3 days apart.

*Split-half reliability.

fThis is the same as the meanofall possible split-half reliability coefficients, boosted by Spearman-

Brown formula.

MTfor 30 trials was determined for means and mediansat each set size in

SID #16 (39 ninth gradegirls), with the following results:

 

Reaction Time Movement Time

Set Size Mean Median Mean Median

1 .884 .830 .746 .967

2 .929 912 .866 .963

4 .909 .912 .734 .934

6 .885 .899 .752 .927

8 .878 .884 855 .933

Mean .897 .887 .791 .945

The boosted split-half reliability of RT slope in this study was .76.
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Reliability in the form of Cronbach’s (1951) alpha coefficient for the mean

of 30 trials was obtained in SID #17 (162 elementary school children, grades
4-6):

 

 

Set Size RT MT

1 954 ~=.701

2 955 ~=—.758

4 951 .728

6 933.781

8 917 771

Mean .942  .748

Boostedsplit-half reliabilities for 30 trials for mean RT and MTin com-

bined SID #12 and 13 (218 vocational college males) are as follows:

 

 

Set Size RT MT

1 925 .897

922 .909

8 914 ~=.893

Mean .920 .900

Combined SID #6 and 7 (105 university students) have the boostedsplit-

half reliabilities for 15 trials for median RT and MT:

 

 

Set Size RT MT

1 962 .942

2 955 953

4 .948 .930

8 .863 921

Mean .932 .937

Median RT and MThavethe following boosted split-half reliabilities for

15 trials in SID #1 (50 university students):

 

 

Set Size RT MT

1 .947 931

2 872 .961

4 836  .977

8 .949 961

Mean .901 .957

In none of these samples is there a tendencyfor thereliability of either RT

or MTto increase with increasingset size. The increase in correlation between
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RT and psychometric g with increasing set size, therefore, cannot beattrib-
uted to increasing reliability of RT with increasing set size. The same holds
true for test-retest reliability, as shown for median RT and MT(15 trials on
each of 2 days) in SID #11 (50 university students):

 

 

Set Size RT MT

1 .681 .802

2 818 .835

4 770 ~—-.887

8 .770 ~~.770

Mean .760 ~=.823

Relationship of Hick Variables to Age

There has been no systematic study as yet using the RT-MT apparatus that
focuses specifically on the relationship of Hick variables to age from early
childhood to maturity and beyond. Fairweather and Hutt (1978) investigated
age effects on Hick parametersin groupsofchildren at each year of age from
5 through 11, with set sizes of 2, 4, and 8, but their apparatus was quite differ-
ent from that usedin the studies includedin this review. RT and MTwerenot
measured separately; responses were made with the fingers of each hand
placed over pushbuttons; the reaction stimuli were numerals. Because of
these differences, the results are not comparable in absolute magnitudes to
those found with the RT-MTapparatus,but the relationships of the Hick pa-
rameters to age werefairly similar to those found with the RT-MTapparatus
reviewed below. The moststriking finding wasthe age differencesin the slope
of RT onbits, the slope decreasing with increasing age.

Telzrow (1983), using the Jensen RT-MTapparatus, found that RT and
MTcan bereliably measured in children as young as 2 years. She measured
RT and MTforsetsize of 8 (3 bits) only, in three groups of white middle-class
children, ages 26-34 months (N = 15), 42-50 months (N = 17), and 65-77
months (N = 17). Inthis age range, mean RT and MTdecrease markedly and
significantly (p < .001) as a function ofage:

 

Age (mos.) RT MT

Range xX X SD X SD
26-34 30.8 967 351 1256 86518

42-50 46.2 840 196 652 218

63-77 69.5 583-137 410 108

Hemmelgarn and Kehle (1984) report RT as a function ofbits in 59 intel-
lectually superior children (WISC-R Full Scale IQ, X¥ = 123.5, SD = 11.2),
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ranging in age from 6 to 11 years. The data are shownin Table 20.It can be

seen that RT intercept and slope parameters decrease with age in a nearly lin-

ear fashion. Thelast three rows of Table 20 show theregression of RT on age

at each level of bits.

The RT data (mean and o;) of SID #17 (160 school children, ages 9 to 14)

were regressed on age(in months), with the results shownin Figure 12, which

indicates that the negative slope of the regression of both mean RT and RTo;

on age increases monotonically as a functionofset size scaled in bits. Clearly,

there is a systematic relationship between RT and age whichis also related to

the information load of the reaction stimulus. At some pointin later matu-

rity, the relationship between age and both RT and MTreverses course, and

RT and MTincrease with increasing age. Ananda’s (1985) study of 76 elderly

adults of ages 51 to 87 years (SID #28), whose educational level is comparable

to that of university students, shows that RT and MTare about 50 to 100

msecgreater in the elderly, and the mean slope of RT on bits is about 10 msec

greater. In fact, the elderly adults (mean age 67.8 years, SD = 8.65) are even

outperformed by schoolchildren in the 4th, 5th, and 6th grades (SID #17).

These comparisenscan be seen in Tables 3 and 7.

There are eight samples in which correlations have been computed between

age and various Hick parameters, as shown in Table 21. Most of these

samples have a restricted age range and therefore are far from ideal for the

study of age effects on RT and MT,showing quite small correlations. Their

value lies in showing that controlling for age in RT studies based onrelatively

homogeneous age groups would scarcely makeany difference.

TABLE 20

RT as a Function of Age in 59 Intellectually Superior Children of Ages 6 to 11 Years (Data

from Hemmelgarn & Kehle, 1984)
 

 
 

 

 

 

 

Bits RTParameters

Age (Yrs.) 0 I 2 3 Intercept Slope Fit (r)

6-7 492.4 558.3 618.0 630.1 503.8 47.28 .966

7-8 464.1 513.5 535.8 559.0 472.1 30.70 .978

8-9 452.8 498.3 506.2 535.1 459.9 25.48 .965

10-11 386.9 407.0 420.0 454.4 379.7 23.70 .968

Mean 449.1 494.3 520.0 544.65 455.1 31.25 .988

Regression on Age

Intercept 662.2 797.7 908.3 889.5

Slope — 25.83 — 36.78 — 47.06 — 41.80

Correlation (r) — .988 — .989 — .983 — .985
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Slope(i.e., RT decrement in msec per 1 month ofage) of the regression of

mean RTandintraindividual variability (o,) of RT on age, as a function ofbits of infor-
mation, for 160 children of ages 9 to 14 years (SID #17).

Relationship of Hick Variables to Intelligence

The relationship of Hick variables to intelligence can be expressed in either
one of two ways: (a) by comparison of the means of Hick variablesin crite-
rion groupsthat differ in their average level of intelligence, and (b) by the
correlation coefficient between Hick variables andscoresonintelligencetests
within a given sample. The size of the obtained correlation coefficient is
partly a function oftherestriction of rangeofability in the particular sample
and the reliability of the correlated variables. The samplesin nearlyall of the
studies under review havea restricted rangeofintelligence compared with the
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TABLE 21
Correlation Coefficient (Decimal Omitted) Between Age and HickVariables in 8 Independent

Samples (N = 606)
 

 

 

Age (Yrs.) Hick Variable

SID No. Group N Mean SD RTX RTa RTb-~ RTo, MTX

2 University Students 25 20.14 2.46 -—-192 -003 -226 -—149 —213

6 University Males 57 19.17 1.39 —035 —121 —217

7 University Females 48 19.04 1.56 +043 +037 — 023

10 University Students 100 21.43 2.63 -092 -068 -—O71 -0O71 + 108

16 9th Grade Girls 39 14.65 0.76  —108 — 165

17 4th, 5th, 6th 162 10.75 0.93 —291 -192

Graders

18 High School 99 16.72 1.62 +130 +120 + 060

Students

28 Elderly 76 67.84 8.65 +258 +150 + 403

 

aRTXMean median RT.
RTa-— Intercept of regression of RT onbits.

RTb—Slopeof regression of RT on bits.

RTo, — Intraindividual variability of RT overtrials.

MTX-—Mean MT.

general population. The IQ variance of the university samples, for example,

is only about one fourth of the IQ variance in the general population. Meas-

urement error is averaged out in groups when Nis large, althoughitis re-

flected in the standard deviation and the standard error of measurement,

thereby attenuating anystatistical test of the significance of the mean differ-

ence. A mean difference expressed in standard deviation,or g, unitsis also at-

tenuated by measurementerror, or imperfect reliability.

Group meansanddifferences on Hick variables. Table 22 shows the
mean intercept and slope of the regression of median RT on bits in the 33

samples in which these parameters were computed. The standard deviation

(SD) was not computedin all studies. For both intercept and slope, the SD of

the sample means is much larger than the SD ofindividuals within samples,

whichis evidence ofthe restricted range of ability within samples.

Notall of the samples can be meaningfully compared with respect to gen-

eral intelligence, because they differ markedly in chronological age. Also,

statistical tests of significance of the differences can be performed only be-

tween samples for which SDs are available. The groups of comparable age

but differing in mean IQ (the second groupin each pair having the higher

mean IQ) that can be compared on RTslope are shownin Table 23. In every

comparison,the slope differs significantly in the predicted direction. Thisis

quite compelling evidence that, as Roth (1964) originally discovered, RT

slope is inversely related to intelligence. The mean differences, in standard

deviation units (o Diff.), range from .300 to .700 in the various comparisons.
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TABLE22

153

Mean and Standard Deviation of Intercept and Slope of Regression of Median RT(in

Msec) on Bits in 33 Independent Samples (Total N = 2067)
 

 

 

 

 

Intercept Slope

SID No. Group N Mean SD Mean sD

1 University Students 50 283.19 25.40 26.02 10.23

2 University Students 25 306.36 36.44 28.38 14.67

3 University Students 100 297.24 29.98 26.11 8.71

4 University Males 50 294.77 31.63 26.21 9.79

5 University Females 50 299.70 28.33 26.01 7.58

6 University Males 57 284.47 28.81 10.70

7 University Females 48 322.47 28.86 11.65

10 University Students 100 314.93 24.54 11.23

11 University Students 50 302.55 26.41 11.77

12 Vocational College Whites 119 338.29 30.13 16.86

13 Vocational College Blacks 99 340.44 38.74 20.06

12 + 13 Vocational College Total 218 339.35 34.04 18.38

14 Vocational College Whites 56 313.09 39.84 29.86 12.66

15 Vocational College Blacks 50 312.01 32.63 29.77 13.22

14 + 15 Vocational College Total 106 312.58 36.45 29.82 12.86

16 Oth gradegirls 39 295.00 30.98 10.79

17 4th, Sth, 6th graders 162 305.90 40.40 39.20 14.32

18 High School Students 99 303.13 26.70

19 Gifted 7th Graders 60 320.44 32.73 15.84

20 Average 7th Graders 72 382.63 46.32 21.99

21 Gifted 9th Graders 76 324.11 23.59 15.33

23 Average 7th Graders 105 451.70 24.20

24 Ages 6-7 15 503.78 47.28

24 Ages 7-8 15 472.05 30.70

24 Ages 8-9 15 459.88 25.48

25 Retarded Adults 46 476.20 72.50 61.60

26 Retarded & Borderline Adults 58 488.75 119.33 78.13

28 Elderly 76 345.02 37.86

29 Handicapped Workers 41 374.00 112.00

29 Apprentices 82 300.00 52.00

29 University Students 59 278.00 44.00

30 Average Adults 40 294.38 33.51 27.48 12.90

31 Average Adults 46 313.99 39.85 20.00 12.73

33 State College Students 93 278.57 57.02

Mean (Unweighted) 343.11 34.04 37.91 18.31

Mean (N-Weighted) 333.02 34.59 37.85 17.73

SD (Unweighted) 66.58 5.01 22.30 17.22

SD (N-Weighted) 56.74 5.26 20.69 15.33
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TABLE 23

RT Slope Comparisons(in Msec) Between Samples of Comparable Age ThatDiffer
in Mean IQ

Mean
SID No. Comparison Groups N Slope SD o Diff.4 t re

20 Above-Average 7th 72 46.32 21.99

Graders

19 Gifted 7th Graders 60 32.73 15.84

Difference 13.59 0.70 4.12** —.:

16 Above-Average 9th 39 30.98 10.79

Graders

21 Gifted 9th Graders 76 23.59 15.33

Difference 7.39 0.53 3.00* —.

12, 13, 14, 15 Vocational College 324 32.66 16.55

Students

1-7, 10, 11 University Students 530 26.48 10.37

Difference 6.18 0.47 6.03** -.

13, 15 Vocational College 149 35.73 17.76

Blacks

12, 14 Vocational College 175 30.04 15.52

Whites

Difference 5.69 0.34 3.04 —.
 

*The difference expressed in average standard deviation units:

o Diff = (X; — X2)/o, where
o = V(N,s? + N,s3)/(N, + Nj)
 

>Point-biserial correlation between group dichotomyandslope, whichis negatively correlated \

the groups’ mean IQs.

*p < .01 (two-tailed).

**n < .001 (two-tailed).

These are not only significant but also quite substantial differences. Cor

rected for attenuation, these o differences andthe point-biserial correlation:

(r,,) would be considerably enlarged, in view of the quite low reliability of th

slope measurefor individuals.

Another Hick variable which has generaly shown a more markedrelation:

ship to 1Q than RTslopeis trial-to-trial intraindividual variability (RTo,). Ta

ble 24 compares the samples of comparable age but differing mean IQ fo.

which the mean and SD of RTo, are available. There is one anomalousfind.

ing in Table 24; the gifted 9th graders (SID #21) do not differ significantly

from the 9th gradegirls, who, although a superior group, do not match the
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TABLE 24
lean and Standard Deviation of Intraindividual Variability in RT (in Msec), the Stand-

rdized Group MeanDifference(o Diff.), and ¢ Test of the Significance of the Difference
 

 

 

 

 

 

 

 

 

 

 

 

 

[ID No. Groups N Mean SD o Diff. t

Average 7th Graders 72 88.71 27.64

Gifted 7th Graders 60 26.47 12.80

Difference 62.24 2.81 17.54**

», 13, 14, 15 Vocational College Students 324 54.15 26.27

-7, 10, 11 University Students 530 34.61 12.59

Difference 19.54 1.03 12.54**

3 + 15 Vocational College Blacks 149 57.89 28.81

2+ 14 Vocational College Whites 175 50.97 23.81

Difference 6.92 0.26 2.33*

+ 6 University Males 107 30.85 12.81

+ 7 University Females 98 35.63 15.30

Difference oe 4.78 — 0.34 —2.41*

5 9th Grade Girls 39 35.32 11.80

l Gifted 9th Graders 76 37.36 14.52

Difference — 2.04 —0.15 — 0.81

8 High School Pupils 99 58.21 20.80

Gifted 9th Graders 76 37.36 14.52

Difference 20.85 1.14 7.80**
 

*p < .02 (two-tailed).

**n < .001 (two-tailed).

ifted group in ability. The gifted 9th graders, however, differ very signifi-

‘antly in the predicted direction from theslightly-above-average high school

rroup (SID #18) who are more than two years older. Mentally retarded

roups have not been entered into any of the comparisons in Tables 23 and

14. They differ extremely (in the expected direction) from the nonretarded

amples of comparable age.

Discrimination in terms of Hick parameters between groupsthat differ in

ssychometric g, or the correlation of these parameters with g, clearly does

10t depend on the presence of retarded or borderline subjects in the sample.

Differences in any part of the IQ continuumarereflected by certain Hick pa-

ameters. The comparison of SID #19 and #20 (gifted and nongifted but

\bove-average 7th graders, from Cohnet al., 1985) illustrates this point. Fig-

ire 13 shows the RT and MTofthe gifted (G) and nongifted (NG) groups (N
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FIGURE 13. Reaction time (RT) and movementtime (MT)in nongifted (NG, SID #20)

and gifted (G, SID #19) groups as a function of bits of information.

= 60 and 72, respectively). The groupsdiffer significantly ( < .001) at every

set size on both RT and MTand on RTslope and RTo;. A discriminant analy-

sis based on 16 variables (median RT, RTo,, rnean MT and MTzo,at eachset

size) correctly classified 87.1%of all the subjects as gifted or nongifted; the

corresponding shrunken multiple correlation is .64. Approximately 92%of

the gifted group and 83% of the nongifted group were correctly classified
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solely on the basis of these Hick variables. (See Cohnet al., 1985, for details

on other RT paradigmsin these groups.)

Correlations between Hick parameters and intelligence. Table 25
shows the correlations between various Hick parameters and intelligence

measuresin 26 independent samples. SID #29, #30, and #31 in Table 25 are of

particular interest, because they havethe least restriction of variance in IQ

and therefore the correlations between IQ and the Hick parametersare prob-

ably better estimates of what would be obtained in the general population. In

fact, SID #21 was composed of 91 young adults selected from three different

samples of differing IQ levels in such a wayas to approximate the normaldis-

tribution of IQ in the general population (Nettelbeck & Kirby, 1983). This

normally distributed sample yields larger correlations between IQ and RTin-

tercept, RT slope, and RTo; (rs = — .36, —.41, and — .71, respectively) than

any other samples. SID #30 and #31 (Barrett et al., 1986) have WAIS IQ

standard deviations of 18.99 and 13.18, respectively, as compared with o =

15 in the standardization population. Most of the other samples in Table 25

are ratherrestricted in IQ variance. All of the overall N-weighted mean corre-

lations are highly significant (p < .001) except for MTo,, for whicht < 1. Of

the four RT variables, RT slope yields the weakest, albeit significant, correla-

tion, in part becauseofits low reliability. Our best estimate of its test-retest

reliability is .39, and assuminga reliability of .90 for the intelligence measure-

ments, the N-weighted mean r corrected for attenuation would be — .20,

which is about the sameas the uncorrected correlation between RTo, and in-

telligence despite the fact that RTo, has about the same lowreliability as RT

slope. If we conservatively estimate the overall restriction of IQ variance

within these samples as one half the population variance, and assumea relia-

bility of .90 for IQ, and the average estimatesof the test-retest reliability of

the Hick parameters (from Table 19), and use these estimates in the appropri-

ate formulas (Gulliksen, 1950, pp. 101, 137) to correct the N-weighted mean

correlations for restriction of variance and for attenuation due to measure-

menterror, the corrected correlations (r,) of the various parameters with IQ

are as follows: |

le
 

Mean RT — 32

RT Intercept — 25

RT Slope — .28

RTo; — .48

Mean MT — .30

MTo; — .02

These corrected coefficients may be viewed as rather conservative estimates

of the true population correlations of the Hick parameters with psychometric
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24 Elem. Sch. Ages 6~11 59 +05 WISC—FSIQ*
25 Retarded Adults 46 +09 —22 — 25 Standard Raven
26 Ret. & Borderline Adults 58 — 34 —21 — 32 Standard Raven
28 Elderly 76 — 45 — 23 — 49 -—16 Standard Raven
28 Elderly 76 — 09 —27 — 26 +10 Mill Hill Voc.
28 Elderly 76 —29 —29 — 43 —02 Total IQ®
29 Normally Distributed Adults 91 — 36 —41 —74 —13 IQ
30 Average Adults 40 — 37 — 30 — 08 — 23 WAIS— FSIQ®
30 Average Adults 40 — 49 — 33 —21 — 30 WAIS—V IQ*
30 Average Adults 40 — 46 — 34 —15 —29 WAIS— PIQS
31 Average Adults 46 — 40 WAIS— FSIQ®
32 Navy Recruits 112 —13 Comp. Exam.

Total N 1195 774 1558 1397 1302 1154
Unweighted Mean —255 — 123 — 106 — 275 — 249 — 103
N-Weighted Mean — 201 —117 —117 — 208 — 189 —O11

t test of N-Weighted Mean 7.08* 3.29* 4.65* 7.94* 6.94* 0.37

Corrected for Range, Unweighted Mean — 350 —172 — 149 — 375 — 34] — 145
Corrected for Range, N-Weighted Mean — 279 — 165 — 165 — 288 — 263 — 016

Disattenuated Unweighted Mean — 389 — 19] — 165 —417 ~ 379 — 161
Disattenuated N-Weighted Mean — 309 — 183 — 183 — 320 — 292 —017
 

“Terman Concept Mastery Test.
‘SAT— Scholastic Aptitude Test.
“Wechsler Adult Intellligence Scale (VIQ = Verbal IQ; PIQ = Performance IQ; FSIQ = Full Scale IQ).
‘School and College AptitudeTest.
“ArmedServices Vocational Aptitude Battery.

‘Lorge-ThorndikeIntelligence Test.
&ComprehensiveTest of Basic Skills.
Total IQ based on composite of Mill Hill Vocabulary and Standard Ravenscores.
TQ for eachofthe three subgroups composing this sample is based on three different tests: Advanced Raven, Standard Raven, and

WAISFull Scale IQ.

p < .001, two-tailed.
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g. Two correlations not included in the above were obtained on 49 preschool

children, ages 26 to 77 months(Telzrow, 1983). Mean RT and mean MT(for

set size 8) correlated — .30 and — .46, respectively, with age-standardized IQ

scores on the Peabody Picture Vocabulary Test. Corrected for attenuation

(based onsplit-half reliability), these correlations become — .34 and — .57. It

is noteworthy that MT yielded the higher correlation in this very young

group.
Hemmelgarn and Kehle (1984) made aninteresting discovery concerning

the correlation of RT slope with WISC-R subtest scores. In a groupof 59 in-

tellectually superior elementary school children, it was found that the 12

subtests of the WISC-R were correlated (negatively) with RT slopeto the de-

gree that the subtests were loaded on the g factor of the WISC-R battery.

Hemmelgarn and Kehle correlated individual differences in RT slope with

scores on each of the 12 WISC-Rsubtests, partialling out chronological age.

The profile of these 12 correlations shows a rank-ordercorrelation of — .83

(p < .01) with the profile of the 12 subtests’ g loadings. (The overall correla-

tion between RTslope and Full Scale IQ was — .32.) This finding, which may

help to elucidate the nature of g, warrants attempts at replication.

Multiple correlation of Hick parameters with IQ. The unweighted and

N-weighted intercorrelations amongthe Hick variables and their correlations

with IQ can be used to obtain an estimate of the overall multiple correlation

(R) between the several Hick variables and IQ. This has been done for the

correlations corrected for attenuation andrestriction of range. The correla-

tion matrices for the unweighted and N-weighted values are shown in

Table 26. The multiple R between the Hick variables and IQ is .50, using

unweighted correlations, and .36, using the N-weighted correlations. Both

Rsare significant beyondthe .001 level. (Using the meancorrelationsnotcor-

rected for range or attenuation, the corresponding Rs are .322 and .242.)

Hence,it would seem safe to say that the best estimate of true multiple corre-

lation in the population between Hick parameters and IQ,or psychometricg,

falls somewhere between about .35 and .50.

RT and MTCorrelation with IQ as a Function of Set Size

A theoretically important aspect of psychometric g is its apparent relation-

ship to task complexity (Jensen, 1987a). This phenomenonhas been in the

foreground of g theory since the early days of factor analysis. A special case

of this phenomenon would seem to be the finding in early RT research that

choice RT is more highly correlated with IQ than is simple RT. Lemmon

(1927), for example, found correlations of — .08 and — .25 of IQ with simple

RT and choice RT in 100 university students. If speed or efficiency of infor-

mation processing is hypothesized to be an essential aspect of g, one should

predict an increasing correlation between g (or IQ) and RTasthe informa-
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TABLE 26
MeanCorrelations (Decimals Omitted),? Corrected for

Restriction of Range and Attenuation, Between Hick Variables and IQ
 

Variable IQ RTX RTa RTb RTo; MTX
 

IQ —389 -—191 — 165 -417  —379
     

     
    
   
  

Mean RT (RT X) — 309 979 374 679 601

RT Intercept (RTa) — 183 —277 460 488

RTSlope (RTb) — 183 413 —234 470 226

RTo, — 320 707 491 482 426

Mean MT(MT X) — 292 593 494 243 439
 

*Above diagonal: unweighted correlations.

Below diagonal: N-weightedcorrelations.

tion processing demandsofthe reaction stimulusincrease, at least up to some
critical point on the complexity continuum beyond which response latencyis
influenced by specific acquired strategies or by certain noncognitive factors
that are not themselves correlated with g. RT in the Hick paradigm lendsit-
self to a test of this hypothesis. Becauseofits central place in g theory,it mer-
its quite thorough examination in termsofall the available data.

Table 27 showsthe correlations of RT and MTwithintelligence measures
at eachset size (scaled in bits). All of the N-weighted mean rsare significant
(p < .001), and are showngraphically in Figures 14 and 15. The increase in r
as a function of bits is almost perfectly linear; the correlation between r and
bits is —.987 for the unweighted means and — .979 for the N-weighted
means. The increasing (negative) correlation for RT is what one would pre-
dict for an index of information processing capacity related to g. MT shows a
slightly opposite trend.

A trend analysis performed on the RT correlations of Table 27 (and
graphed in Figure 14) shows a highly significant linear trend (F[1,84] =
12.12, p < .001), while the mean deviations from linearity are quite non-
significant (F < 1). Etasquared (x 100) for the linear componentis 13.51%.
A parallel analysis of the MTcorrelations in Table 26 (graphed in Figure 15)
shows a nonsignificant (F[1,57] = 1.34) linear component and nonsig-
nificant (F < 1) nonlinear component.

Since there are substantial differences between studies in the average size
of the correlations between RT and IQ, we must perform an analysis of the
Table 27 data that examines whetherthe linear trend of RT x IQ correlation
on bits remains whenall studies have been equated for the average value of
their correlations over bits. This can be done by converting the four correla-
tions in each study to percentages, by dividing each r by the sum ofall four rs



TABLE 27

Correlation Coefficient (Decimal Omitted) Between Intelligence Measures and RT and MTas a FunctionofBits in

15 Independent Groups (N = 1129)
 

 
 

 

RT (Bits) MT(Bits)

SID No. Group N 0 I 2 3 0 I 2 3 Intelligence Measure

1 University Students 50 +09 — 02 — 06 — 32 Advanced Raven

1 University Students 50 +24 +10 +25 +12 CMT #

2 University Students 25 —-12 -06 -12 —11 —21 —29 —23 —14 Advanced Raven

6 University Males 40 — 03 — 06 —11 —18 — 41 —31 — 36 —33 SAT —Verbal?

6 University Males 40 + 37 +34 +37 +18 —21 —15 —17 —11 SAT—Math

10 University Students 100 —11 —19 —17 —-16 -—31 —24  —24 —23 WAIS—VIQS

10 University Students 100 —11 — 25 —29 —30 —23 —26  —24 —25 WAIS—PIQS

10 University Students 100 —13 — 25 — 26 —27 —31 —29 —28 —28 WAIS—FSIQS

10 University Students 100 —14 —22 — 24 —21 — 28 — 30 — 29 —27 Advanced Raven

11 University Students 50 + 03 — 04 — 09 — 08 —11 —l1 —15 —14 Advanced Raven

12 + 13 Vocational College Students 218 -20 — -19 -19 -17) — —~11 -10 SCAT?

12 + 13 Vocational College Students 218 —15 — —15 —11 — 08 — — 03 —03 ASVAB‘

16 9th Grade Girls 39 — 26 — 33 — 4] — 35 — 38 — 43 — 36 —36 Standard Raven

17 4th, 5th, 6th Graders 162 — 08 — 02 — 04 —12 — 05 — 06 —12 —10 Standard Raven

17 4th, 5th, 6th Graders 162 — 25 —-16 —17 —21 —13 —-14 —-13 —13 Verbal IQ!

17 4th, 5th, 6th Graders 162 —18 —11 —11 —14 — 16 — 08 —17 —11 Nonverbal IQ!

19 + 20 Gifted vs. Avg. 7th Graders 130 —4]1 — 53 — 54 — 54 ry G/NG®

22 Average 7th Graders 20 — 66 — 69 — 89 — 89 — 64 — 60 —70 —49 Standard Raven

22 Average 7th Graders 20 — 50 — 36 — 58 — 60 — 41 — 37 — 42 —34 Read. Comp.

22 Average 7th Graders 11 -69 -5S4 —-7I1 -60 -60 -5l —53 —48 CTBS®

c
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22 Average 7th Graders 20 ~25 -—-14 -—13 -~18 ~36 -27. -—24 -—33 English GPA!
22 Average 7th Graders 18 —-24 -15 -22 -—-29 -—07 +15 00 —13 MathGPAi
23 Average 7th Graders 105 —-12 -07 —07 ~19 +01 00 —03 —0O7 Standard Raven
23 Average 7th Graders 94 — 33 — 29 —-32 —33 —22 —21 —21 —26 Read. Comp.
23 Average 7th Graders 104 -—20 -09 -11 -17 +402 +05 +01 +02

+

#4CTBSA
25 Retarded Adults 46 — 25 —27 —3] — 06 Standard Raven
26 Ret. & Borderline Adults 58 — 34 — 31 — 33 — 36 Standard Raven
29 Normally Distributed Adults 91 — — 63 — 65 — 67 — —-56 -53 -45 IQ)
30 Average Adults 40 —-27 -—35 —~39 —29 WAIS—VIQ*
30 Average Adults 40 —32 -42 -47 ~—46 WAIS—PIQS
30 Average Adults 40 —-32 -41 — 45 — 40 WAIS— FSIQ*
31 Average Adults 46 ~14 -—-21 —~19 -15 WAIS— FSIQ*

Unweighted Mean —19 —21 — 24 — 26 —24 —22 — 23 —21
N-Weighted Mean —18 ~19 —22 — 23 —17 —17 —15 —14
t test of N-Weighted Mean 6.1* 5.9* 7.6* 7.9* 4.7* 4,1* 4.3*  4,0*
 

“Terman Concept MasteryTest.

>SAT— Scholastic Aptitude Test.
“Wechsler Adult Intelligence Scale (VIQ = Verbal IQ; PIQ = Performance IQ; FSIQ = Fulll Scale IQ).
4School and College Aptitude Test.
“Armed Services Vocational Aptitude Battery.

‘Lorge-Thorndike Intellligence Test.

®Point-biserial correllation based on gifted and nongifted 7th graders.
hComprehensive Test of Basic Skills.
iGPA— Grade Point Average. |
ISee Nettelbeck and Kirby (1983, p. 44) for description of IQ tests.
p < .001 (two-tailed). W
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FIGURE 14. Mean unweighted and N-weighted correlations between RT and IQ based

on 15 independent samples comprising a total of 1129 subjects.

 

and multiplying by 100. The unweighted mean percentages at each level of

bits, then,are:

Bits: 0 1 2 3

Mean %: 21.6 23.2 26.7 28.4

The linear correlation, r, between bits and mean % is .987, indicating a

strong degree of linear relationship between the RT x IQ correlations and

bits of information. This relationship indeed appears to be real. However,it

is not a very reliable or constant phenomenonin manysingle studies. A num-

ber of methodologically sound studies have failed to find the consistently

increasing correlation between RT and IQ as a functionofbits (e.g., Barrett

et al., in press). To get some idea of the degree of agreementof individual

studies with the monotonically increasing trend line obtained from the aver-

age ofall studies, the four correlations in each study were ranked from lowest

to highest and the ranks were correlated with the rank order expected on the

hypothesis of a monotonically increasing trend,i.e., 1, 2, 3, 4. The rank-

order correlation, averaged overall studies, is o = .394, SD = .457. (The

corresponding Pearson r = .404, SD = .477.) This quite low average correla-

tion reflects the fact that there is not a very high degree of agreementofsingle

studies with the model of monotonically increasing correlation of RT with IQ
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FIGURE 15. Mean unweighted and N-weighted correlations between MT and IQ,based

on 8 independentstudies comprising a total of 759 subjects.

as a function ofset size. The meanrankcorrelation betweenall possible pairs
of studies as calculated by Kendall’s coefficient of concordance is W = .167,
which, though small, is significant (F[2.93/82.17] = 5.60, p < .01). Another
way oflooking at the degree of agreementof the 29 studies that used set sizes
correspondingto 0, 1, 2, 3 bits is to tabulate the frequency of the rank order
of the size of the RT x IQ correlation at each level of bits, as shown in Table
28. The frequent departures of the RT x IQ correlation from a perfect mon-
otonically increasing function of bits is most probably attributable to
sampling error. Correlation coefficients in the lower range that we are
viewing here have quite large standard errors for sample sizes of less than 50
subjects, which is typical in these studies. (Among these 29 data sets, how-
ever, degree of conformity to a monotonic increasein correlationsis not sig-
nificantly related to sample size.) Although the increase in the RT xX IQ cor-
relation with bits is a rather weak and erratic phenomenon in the Hick
paradigm,it is consistent with the findings of RT x IQ correlationsincreas-
ing as a function of task complexity in a numberof other RTtasksthat differ
in complexity (e.g., Vernon & Jensen, 1984).
Correlation between RTo; and IQ as a function of set size. Of all the

Hick parameters we have examined,intraindividual variability of RT, RTo,,
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TABLE28
Frequencies of Rank Orderof the Size of the

RT x IQ Correlation at Each Levelof

Bits in 29 Data Sets?(N = 911)
 

 

 

 

Bits

Rank ofr 0 I 2 3

1 14 9 2 1
1.5 1 2 3 0
2 3 10 7 7

2.5 0 0 0 0
3 5 5 7 8
3.5 2 0 3 3
4 4 3 8 10

xb 2.05 2.03 2.80 3.08

SD 1.19 0.97 1.00 0.87
 

4All the 29 sets in Table 27 that give RT x IQ correla-

tions for 0, 1, 2, 3, bits.

bX is the mean rank order of the RT x IQ correlation over

the 29 datasets.

is generally a better correlate of IQ, even despite its lowerreliability, than all

of the other parameters except RT slope, which has aboutthe samereliability

as RTo,. Yet the correlation between RTo, and IQ showsnosignificant rela-

tion to set size, as can be seen in Table 29. This findingis strikingly inconsist-

ent with the oscillation model originally proposed by Jensen (1982a, pp.

127-131) in that individual differences in an oscillatory mechanism werehy-

pothesized to underlie individual differences both in RTo, and in g. Since

RTo, increases linearly as a function ofset size (see Figure 11), with increasing

set size one should predict a greater opportunity for individual differences in

the oscillation process hypothesized to underlie both RTo; and g to be increas-

ingly manifested, thereby making for a monotonically increasing (negative)

correlation between RTo, and g as a function ofset size. This prediction was

not borne outin the least, judging from the 16 data sets based on eight inde-

pendent samples comprising 603 subjects shown in Table 29. This is the only

really substantial anomalyfor the oscillation model. It seems no less anoma-

lous in terms of the model of different error rates in synaptic transmission

of information proposed by A. E. Hendrickson (1982), as explicated in

Eysenck’s chapter in the present volume.It also seems inconsistent with the

general finding in other studies that the size of the correlation between psy-

chometric g and RTog,in various RTtasksis directly related to task complex-

ity, and that both RT and RTo, increase as a function of task complexity

(e.g., Vernon & Jensen, 1984). Therefore, it is puzzling that the RTo,; x IQ

correlation does not increase with increasing set size in the Hick paradigm.
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TABLE29
Correlation Coefficient (Decimal Omitted) Between Intelligence and Intraindividual Variability (RTo;)

As a Functionof Set Size (n) in 8 Independent Samples (N = 603)
 

 

 

 

 

 

Set Size (n)

SID No. Group N I 2 4 8 Intelligence Measure

l University Students 50 -0O7 -03 -18 -—38 Advanced Raven
1 University Students 50 —-Ol +20 +414 #=—27 Concept Mastery Test
2 University Students 25 -~32 -—-41 -33 —-21 Advanced Raven
10 University Students 100 -12 -05 -12 -10 WAIS Verbal IQ
10 University Students 100 —~34 -25 -21 -—33 WAIS Performance IQ
10 University Students 100 —-26 -—-17 -19 —24 WAISFull Scale IQ
10 University Students 100 —-33 -10 -16 -—33 Advanced Raven
11 University Students 50 —-16 -10 ~-—28 -—18 Advanced Raven
17 4th, Sth, 6th Graders 162 +01 -11 -—-24 —26 Standard Raven
17 4th, 5th, 6th Graders 162 —-11 -15 -21 -18 Lorge-Thorndike Verbal IQ
17 4th, 5th, 6th Graders 162 —-09 -17 -—27 =—-17 Lorge-Thorndike Nonverbal IQ
19 & 20 Gifted vs. Avg. 7th Graders 130 —-60 -54 -45 -—37 Point biserial 7, Gifted/Avg.
30 Average Adults 40 —23 -07 —-33 —-16 WAISFull Scale IQ
30 Average Adults 40 —-25 -0O1 -—26 —10 WAISVerbal IQ
30 Average Adults 40 -19 +14 ~-37 —-15 WAIS Performance IQ
31 Average Adults 46 —-40 -17 -—28 —20 WAISFull Scale IQ

Unweighted Mean —-22 -14 -—25 -—23

N-Weighted Mean —26 —-21 -—28 -—25

t test 6.72* 5.36% 7.24* 6.32*

Corrected for Range, Weighted Mean —-36 -—-29 -39 —34

Disattenuated, Weighted Mean -40 -33 -—43 -—38
 

*p < 001, two-tailed.
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Explanations of the RT x IQ Correlation

The aim of this chapter has been simply to review the empirical evidence on

individual differences in the parameters of the Hick RT paradigm. Theoreti-

cal speculations about these findings must be the subject for anotherarticle.

Someof the main theoretical issues put forth in the recent past on the RT-IQ

relationship are reviewed in Eysenck’s chapterin this volume. In view ofall

the evidence I have presented in the present chapter, I doubt that, at present,

we have an adequate theoryto explain all of the now quite well established

facts of individual differences in Hick variables andtheir relation to psycho-

metric g. The substantial correlations between all of the various Hick param-

eters, and the fact that they are all correlated to much the same degree with

IQ, allowing for differences in reliability, suggests that some quite general

factor in the speed or efficiency of performanceis reflected in all aspects of

the Hick paradigm. Individual differences in the Hick RT intercept are also

substantially correlated with the RT intercepts of both the Sternberg memory

search and the Neisser visual search paradigms (Jensen, 1987b). The early ex-

pectation that the various parameters, presumably reflecting different cogni-

tive processes, would clearly differentiate among individuals, is not borne

out by the present evidence. Theoretically, RT slope should be a purer index

of rate of information processing than RT intercept, yet they are correlated

with IQ about equally. And MT, which supposedly reflects a motorskill

component rather than an information processing component, is about as

highly correlated with IQ as 1s RT. In a study using a variety of different RT

tasks, Ananda (1985) found that scores on verbal and nonverbalintelligence

tests (Raven Matrices and Mill Hill Vocabulary) had their largest loadings

(— .648 and — .480) on the general factor (first principal component) com-

mon to both RT and MT,both variables showing large positive loadings on

the same general factor. The intelligence measures have near-zero loadings

(—.03 and —.13) on the bipolar factor which distinguishes RT from MT

(with positive and negative loadings respectively). Although it is not yet

unarguable, the evidence on the Hick parameters seemsto indicate that g is

more highly correlated with a general factor commonto all of the Hick RT

and MTvariables than with any particular cognitive processing components

that can be inferred from certain parameters of the Hick paradigm. One

might even go so far as to hypothesize that the general factor of a large and

diverse battery of RT tasks (that is, all the RT and MT parameters derived

from them) is one and the samegeneral factor as found in the factor analysis

of any large and diverse battery of conventional psychometric tests of mental

ability.

Althoughthere is presently no truly detailed and comprehensive theory of

all the individual differences phenomena observed in the Hick paradigm,

there are several theoretical speculations abroad which I think are either
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flatly contradicted by the evidenceoraretheleast likely to prove correct.It.

would seem worthwhile to mention these unpromising notionsbriefly.

Commonspeedfactor in test taking. This is the notion that since some
psychometric tests are speeded or timed, and individuals presumably differ in

response to time pressure andin speed of work,suchtests will be correlated

with RT, whichis also a measureof speed. This conjectureis contradicted by

variouslines of evidence. In the first place in nearly all of our RT studies, we

have used tests that were not only unspeeded and untimed but in which sub-

jects were explicitly urged to take all the time they needed, to attempt every

item, and to check their answers. In most studies, subjects were tested indi-

vidually on the psychometric tests as well as on the RTtests, so as notto feel

they were in competition or to have any clues about how fast others com-

pleted the tests. Secondly, in specific investigations in which sometests were

speeded and othersgiven without time limit, there was nosignificant differ-

ence in the tests’ correlations with RT measures. If anything, there is even a

tendency for unspeededtests to show slightly higher correlations with RT

than speeded tests. (See Vernon, Nador, & Kantor, 1985, and Vernon and

Kantor, 1986, for a detailed discussion of studies specially directed at this

point.) Thirdly, individual responselatencies on items of complextests, such

as the Raven, are not significantly correlated with psychometric g. Also,

highly speeded tasks in which the task requirements per se are quite simple,

such as clerical checking, letter cancellation, and the like, are among the

poorest psychometric correlates of IQ or g, and they also show the weakest

correlations with RT (Vernon & Jensen, 1984, p. 417).

Strategies and speed-accuracytrade-off. So far no one has made seri-
ous case for the idea that the individual differences in certain performance

strategies account for the RT x [IQ correlation. As pointed out previously,

the conjecture that different strategies are involved in the RT slope was sug-

gested by Nettlebeck and Kirby (1983) on the basis of their observation of a

negative correlation between RT intercept and RT slope. But the negative

correlation is shown to be anartifact due to negatively correlated measure-

menterrors. Nettelbeck and Kirby (1983)also suggest that a negativecorrela-

tion between RT slope and MTintercept observedin one of their samplesin-

dicates a strategy of “making a movementafter detecting only the presence of

a signal, but then delaying movementso as to permit a further decision dur-

ing movement about which alternative was involved” (p. 50). Although

something like this may occur in the mentally retarded and in very young chil-

dren, we have foundnottheslightest suggestion of it in normal samples of

school age and above.This strategy, if adopted by some subjects and not by

others, would be expected to cause a negative correlation between RT and

MT, which is not found. Also, as seen in Table 16, the 18 studies (total N =

375) in which a correlation was obtained between RT slope and mean MT

(which is almost perfectly correlated with MT intercept) do not show a nega-
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tive correlation between these variables; the N-weighted mean correlation

(over 18 studies) is + .087 (+ .243 corrected for restriction of range and

attenuation).

The most commonly offered explanation of RT x IQ correlation is in

terms of a speed-accuracytrade-off, or the conjecture that brighter subjects

try to improve their RT performancebysacrificing response accuracy for an

increased speed of response. This hypothesis is unconvincing for two main

reasons. First, with the use of a home button, which the subject merely has to

release, response accuracy with respect to RTis virtually assured; inaccuracy

of response would show up asa failure to touch the buttonthat turns off the

reaction stimuluslight, thereby affecting movementtime, not RT.So simple

is the RT task that such responseerrors are extremely rare in this procedure

and are completely absentin the vast majority of subjects. Second, and more

important, is the fact that if a speed-accuracy trade-off accounted for any

part of the individual differences in either RT or MT,there should be a nega-

tive correlation between responseerrorrate and RT (or MT).Yet all RT stud-

ies in which both RTs anderror rates have been measured showapositive cor-

relation between RT and errors. The faster responders are also the more

accurate responders. Thereis no evidencein our various RTstudiesor in any-

one else’s for a between-subjects speed-accuracy trade-off. Speed-accuracy

trade-off is a within-subjects phenomenon, accounting for negative correla-

tions (within subjects) between RTs anderrorrates underdifferent levels of

task difficulty. It presents no problem for interpreting the correlation be-

tweenindividual differences in RT and IQ, because the between-subjects cor-

relation of RT and errorrateis apositive correlation, and both RT anderror

rate are negatively correlated with IQ. These relationships can be explained

more easily with reference to Figure 16. On the simple task, hypothetical per-

sons A, B, and C are shownto have the same short RT andlow error rate. On

the complex task, the latest ability differences between A, B, and C are mani-

fested as variation in their RTs and error rates. Their performances, as re-

flected jointly by RT anderrors, will tend to fall somewhere on each of the

arcs that describe the speed-accuracy trade-off and are different for each

person. If the same low errorrate of the simple task is to be maintained for

the complex task, the RT is greatly increased for all persons (vertical line =

zero speed-accuracy trade-off). If the RT in the simple task is to be main-

tained in the complex task, the error rate is greatly increased for all persons

(horizontal line = 100% speed-accuracy trade-off). So the arc for each per-

son describes an inverse relationship (or negative correlation) between RT

and error rate. But between persons, RT and errorrate show direct relation-

ship (or positive correlation). The line marked X in Figure 16 indicates a

fairly high speed-accurracy trade-off for a typical RT study,if the error rate

(on the abscissa) is assumed to range between zero and chance. Thus the

shaded area represents the most desirable region for performance when
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FIGURE 16. Theidealized relationship between RT anderror rate for simple and com-

plex tasks. The arcs describe the speed-accuracytrade-off for hypothetical persons, A, B,

and C, who are shownhereas performing equally on the simple task. Shaded area repre-

sents most desirable region of speed-accuracy trade-off for RT studies.

studying individual differences in RT in that it spreads out individual differ-

ences in RT much morethanin errorrate, a feature observed in all of our RT

studies. Hence the observed correlation between RT variables and IQ canin

no way be accounted for in terms of speed-accuracy trade-off.

Motivation or Arousal. Could it be simply that the more highly motiv-

ated subjects, because of their greater motivation, perform better on both the

ixT tasks and the IQ tests, thereby causing them to be correlated through the

common factor of motivation? This possibility has not been conclusively

ruled out, but it seems an improbable hypothesis. The fact that an increase in

the complexity of RT tasks causes RT to be more highly correlated with g

runs counter to what is known abouttherelationship of motivation or drive

to efficiency of performance as a function of task complexity. The well-

established empirical generalization known as the Yerkes-Dodson Law

(Yerkes & Dodson, 1908) states that the optimal level of drive (D) for learn-

ing or performanceof a task is inversely related to the degree of complexity

of the task; that is, a Jower level of Dis more advantageousfor the perform-
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ance of more complex tasks.In this respect, D is just the opposite of g. The g
loading of tasks increases with task complexity, and persons whoscore
highest in the most g-loaded tests are more successful in dealing with com-
plexity. From whatresearch has taught us about D and the Yerkes-Dodson
Law,one would notpredict high-D personsto perform like high g personsas
a function of task complexity. In humans, changesin drive and arousal are
reflected in pupillary dilation. Ahern and Beatty (1979) measured the degree
of pupillary dilation as an indicator of effort and autonomic arousal when
subjects are presented with test problems. They foundthat(a) pupillary dila-
tion is directly related to level of problem difficulty (as indexed both by the
objective complexity of the problem andthe percentage of subjects giving the
correct answer), and (b) subjects with higher psychometrically measured in-
telligence show Jess pupillary dilation to problemsat any given levelof diffi-
culty. (All subjects were university students.) Ahern and Beatty concluded:

Theseresults help to clarify the biological basis of psychometrically-defined in-

telligence. They suggest the moreintelligent individuals do not solve a tractable

cognitive problem by bringing increasedactivation, “mental energy”or “mental

effort” to bear. On the contrary, these individuals show less task-induced acti-

vation in solving a problem ofa givenlevelof difficulty. This suggests that indi-

viduals differing in intelligence mustalso differ in the efficiency ofthose brain

processes which mediate theparticular cognitive task. (1979, p. 1292; emphasis

added)

Neurophysiological Correlates of Hick Variables

Mysearchof the literature has turned up only twoinvestigations of physio-

logical correlates of Hick parameters, both based on the average(cortical)

evoked potential (AEP), using an auditory stimulus(a “click”). An index of

“neural adaptability” (NA), derived from the amplitude of the AEP, which

was foundto be correlated with IQ in previousstudies using subjects of aver-

age and superiorintelligence, was found to be correlated both with psycho-

metric g and with certain Hick parametersin a group of 54 severely retarded

adults (Jensen et al., 1981). The index of neural adaptability showedthefol-

lowing correlations with Hick parameters (in parenthesesare the correlations

of the Hick parameters with g factor scores derived from 15 psychometric

tests):

Median RT: — .02n.s. (—.13 n.s.)

Median MT: — .16n.s. (— .18 n.s.)

RTo;: — .24,p < .05 (— .44, p < .01)

MTo;: — .38,p < .01 (—.57, p < .01)
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Remarkably, the correlation between the twosets of correlations is + .94;

that is, the correlation of the Hick variables with psychometric g is closely

paralleled by their correlation with the index of neural adaptability. The sum

of the standardized Hick variables together with NA yields a shrunken multi-

ple R of .54(p < .001) with psychometric g.

A further investigation of the relation between the AEP and Hick’s Law

was made by Schafer, Amochaev,and Russell (1982), who engaged eight nor-

mal young adults in the Hick task with set sizes 1, 4, and 8 (using Jensen’s

RT-MTapparatus) while measuring their cortical responses evoked by the

visual stimuli in the Hick task. The results showed that the amountof infor-

mation (bits) conveyed by the evoking stimuli affects not only the RT(i.e.,

Hick’s Law), but also the latency of the cortical evoked potential (EP). The

EP latencies also manifested Hick’s Law, the EP latencies increasing linearly

as a function of bits. EP amplitude, interestingly, showed a negative relation

to bits, decreasing linearly from 0 to 3 bits. This is especially interesting be-

cause amplitude is also inversely related to IQ. The average fit of the RTs to

Hick’s Law (calculated from data provided by Dr. Schafer) is r = .958; of the

EPlatencies, r = .933; of the EP amplitudes, r = (negative) — .997. Hence

both the latency and amplitude of the cortical potential evoked by stimuli

conveying varying degrees of information appear to manifest Hick’s Law to

about the same degree as overt RT. The rank-ordercorrelations between RTs

and the late cortical EP latencies (i.e., the N417 and P553 components) were

.58 and .65. These results should encourage further investigations ofthe rela-

tionships between RT variables, evoked cortical potentials, and psychomet-

ric g. It seems most probable thatit is from this sphere of researchat the inter-

face of brain and behaviorthat a scientifically adequate theory of individual

differences in intelligence will eventually take shape.
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CHAPTER 5

What Does Reaction TimeTell
Us AboutIntelligence?

Douglas K. Detterman
Case Western Reserve University

and

Air Force Human Resources Laboratory

Reaction timeis one of the oldest and most extensively studied tasks in exper-

imental psychology. It has been used to investigate general principles of be-

havior and to assess individual differences. Simple reaction time was one of

the measures used by Galton (1883) to index individual differences. And ev-

ery student of psychology has heard an account of how personal equations

were proposed as an adjustment for differences in astronomers’ reaction

times.

Though reaction time received early attention, it was quickly abandoned.

More complex measures were adopted in the belief that a simple measure of

performance would never be useful in understanding complex behaviors.

This trend wasparticularly true of individual differences research. Complex

tests like those currently used on intelligence tests were favored over simpler

measures of more elementary processes.

Some experimental psychologists continued to study reaction time (Smith,

1968) in the hope of discovering general principles of behavior. But individ-

ual difference researchers ignored it for the major part of this century, witha

few notable exceptions (Baumeister & Kellas, 1968; Welford, 1980). Within

the last several years, however, there has been a resurgence of interest in the

relationship between reaction time and humanintelligence. The purpose of

this chapter is to consider this recent interest in reaction time, particularly
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with respect to how reaction time experiments might clarify theories of

intelligence.

I will attempt to accomplish three thingsin this chapter. First, I will specify

the potential classes of theories of human intelligence and indicate how

choice reaction time measuresare related to each class of theory. Second,I

will present a brief, biased review of the literature and data from three new

experiments in support of my theoretical biases. Third, factors which must be

explored before the relationship between reaction time and humanintelli-

gence are understood will be discussed. I believe it will be clear from this

discussion that choice reaction time is not a simple process reflecting a

unitary aspect of humanintelligence.It is, instead, a complex set of proces-

ses, some of whichare a part of humanintelligence.

THEORIES OF INTELLIGENCE AND

THEIR RELATIONSHIP TO CHOICE REACTIONTIME

There are three classes of possible theories of human intelligence (Detter-

man, 1980, 1982, 1984a, 1984b, 1986). Each of these theories has a different

implication for the relationship of reaction timeto intelligence. However, be-

fore discussing this relationship it is important to specify just what reaction

time measureswill be discussed.

Choice Reaction Time
Choice reaction time task. Choice reaction time tasks discussed in this

chapterare similar, if not identical, to the choice reaction time task described

by Jensen (1979, 1982a). A diagramatic representation of this task is shown

in Figure 1. The implementation of the task which I have used in my research

uses a computer screen, and subjects makeall responses by touching the

screen. Theleft panel of Figure 1 shows whatthe subjectsees in this task. The

right panel indicates what the subject must do.

At the beginning of eachtrial, a semicircular display of empty windows

appears on the computer screen. The display shown in Figure 1 has eight

windows,but atrial could have 1, 2, 4, 6, or 8 windows. At the bottom center

of the screen is a small bar. To begin the trial, the subject presses the bar and

keeps pressing the bar. The subject watches the screen until, after some

variable interval, one of the windowslights up. Whenthe subjectseesthelit

window,he or she responds by moving his or her finger from the bar and

touching the lit window as quickly as possible. When the subject makes the

correct response,the screen goes blank and,after a brief interval, a newtrial

begins.
The task I have used consists of 120 trials of the type described above. Each

set size gets 24 trials. Trials are generally blockedbyset size. Thatis,all trials
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with onealternative (i.e., window)are presented together,all two-alternative
trials are together, etc. Trial blocks of different set size are presented in
ascending order. Subjects always receive 24 trials of 1, 2, 4, 6, and 8
alternative trials in that order.

Choice reaction time measures. There are a number of measures
which can be obtained during each trial. Carroll (1980) has recommended
that reaction time be divided into decision time and movementtime. Decision
time is the amountof time from stimulus onset to response initiation. In the
paridigm described above, decision timeis the time the subject keeps his or
her finger on the barat the bottom ofthe screen after one of the windowshas
lit up. Movementtime is the amountoftime required to execute a response.It
is measured as elapsed time from whenthe subjectlifts his or her finger from
the bar until the lighted windowis touched.

Other measuresof interest include numberoferrors, total amount of time
for each trial, and measures with the potential to show systematic change
over trials or conditions. One measure which hasreceived a great deal ofat-
tention is the slope of decision time over set size. As the numberofalter-

natives which a subject must scan gets larger, an increase in reaction timeis

expected. Hick (1952) proposed that reaction time wasa linear function of

the log(base 2) of numberof choices, since the log of numberof choices rep-

resents the amountof informationin the display. Unlike Hick, who was most

interested in the ability of information theory to generally describe human

behavior, individual differences researchers are most interested in whether

differences in slope for individuals are related to intelligence. It would be ex-

pected thatless intelligent persons should haverelatively more difficulty as

the numberof alternatives increases. So steeper slopes should indicate lower
IQs.

Theories of Intelligence

Oneof the most persistent debates in psychology has been howto character-

ize intelligence. Spearman (1904, 1927) characterized intelligence as a single

thing which he called g. On the other hand, Thurstone (1935, 1938) attempted

to show that intelligence consisted of a small number of separate abilities.

Still others (Humphreys, 1979; Thomson, 1939) have characterized intelli-

gence as a large, perhapsinfinite, number of separate components.

Which ever of these theories is correct, there are some undeniable empir-

ical findings for which any theory will have to account. Oneis that complex

tests of intelligence demonstrate what Spearmancalled “positive manifold”;

all mental tests are positively correlated. The size of this interrelationship in

any particularset of tests can be summarized by the proportion of variance

accounted for by the unrotated first principal component. This is what
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Spearmandefined as g. ThoughI will adoptthis as the empirical definition of
g, it does not mean that I agree with Spearman’s theoretical explanation of
whyg exists. It is impossible, I think, to deny the empirical reality of the phe-
nomenon,but there can be manypossible theoretical explanationsforit. In
fact, it is really the implication that reaction time has for theories ofintelli-
gence and understanding g in particular that makes it such an interesting
topic.

Another important empirical relationship is that tests of basic cognitive
abilities tend to have lowercorrelations with IQ than do more complextests.
How doesa theory ofintelligence explain this difference across levels of
complexity?

Intelligence as a single thing. It is tempting and, indeed, parsimonious
to believe that intelligence is a single thing. Althoughit has seldom been ex-
plicitly stated, one of the reaonsforincreasedinterest in reaction timeis that
mental speed would appear to be a good candidate for the single variable
defining intelligence (e.g., Eysenck, 1982). It would certainly provide major
support for this theoretical position to find a simple, almost biologically-
based test that would be completely predictive ofg.

In fact, finding a single variable which would predict the g-loadedness of
different tests is a major requirementto supportthis theoretical position, be-
cause the theory postulates just such a relationship. In addition, the differ-
>ncesin thesize of intercorrelations amongtests is accountedfor by postulat-
ng that sometests are more g-loaded than others. In other words,they in-
-lude moreofthesingle variable in what they measure.
Whatthis particular theoretical position should therefore predictis that,if

t were possible to obtain a “pure” measure of the single variable thatis g,
hen the correlation between this pure measure and factor scores of g ex-
racted from less pure measures of intelligence should be nearly perfectly cor-
elated. This is the hope for measures of mental speed such as choice reaction
ime or electrophysiological measures of related processes. In fact, measures
yf averaged evokedpotentials obtained by someinvestigators (A. Hendrick-
on, 1982; D. Hendrickson, 1982) come very close to this goal.
Aswill be seen in the following discussion,evenifit is possible to show that

single measure from a simpletaskis highly correlated with g,it still must be
hownthat the measureis of a single process andis not,itself, a measure of a
umber of complex processes. This would require a sophisticated under-
fanding of the task purported to yield a single, simple measure of g. Cer-
uinly, neither choice reaction time nor averaged evokedpotentials are suffi-
iently well understood to conclude that any measurestheyyield reflect the
peration of a single variable.
Intelligence as a small set of independent elements. Anothertheoreti-

al possibility is that intelligenceis composed of a small numberofseparate
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abilities or processes. Any mental task consists of a subset of these processes.

The more complex the task, the more processes that will be required to per-

form it.

According to this position, tasks are interrelated to the extent they both use

the same processes. IQ tests are highly correlated with each other because

they consist of complex items and involve all of the basic processes in each

test. Simpler tasks have lowerintercorrelations with each other because each

task has fewer of the basic processes and, therefore, two tasks are likely to

have fewer processes in common.

Even though simple tasks have lower correlations with intelligence, they

can be combinedto predict all of the variance in the more complex IQ tests.

All that is necessary is that the simple tests be selected so that they contain, in

combination,all of the processes contained in the more complextest. Ideally,

each of the simple tests would have a small correlation with IQ but be

uncorrelated with any of the other simpletests.

In fact, a test of this theoretical positionis the degree to whichit is possible

to obtain independent measuresofthe postulated separate processes. Ifit is

possible to combine measuresso that increments in prediction accrue beyond

what would be expected dueto the unreliability of the combined measures,

then the different simple tasks must contain different processes.

Further, it is to be expected that simple tasks will have low correlations

with IQ.If there are 10 basic processes involvedin intelligence, and each ac-

counts for the same amountof variance, thenit should be expected that a

pure measure of one of these processes would account for 10% ofthe vari-

ance, and thatits correlation with a perfectly reliable IQ test would be .33.

The moreprocesses constituting intelligence, the smaller the correlations of

basic processes with intelligence should be.

Whatare the implications of this theoretical position for the relationship

between choice reaction time andintelligence? If there are relationships be-

tween IQ and choice reaction time measures, these relationships would obvi-

ously be interpreted much differently than they would beif intelligence was

the result of a single variable. It would be expected that choice reaction time

measures would correlate with intelligence to the extent the measuresinclude

the same processesas intelligence. Different choice reaction time measures

would be uncorrelated if they did not contain commonprocesses.

Since correlations do exist between simple cognitive tasks, this position

would explain those correlationsas resulting from the presence of commor

processes. That is, even what appear to be very simple tasks are not pure rep-

resentations of basic processes. If two simple tasks were reflections of pure

processes, they would be uncorrelated. Not surprisingly, according to thi:

position current measures of choice reaction time would be regardedasfairl}

complex.

Intelligence as a large set of elements. A third theory of intelligence
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owesits beginning to Thomson (1939). It is sometime called “bond theory.”

In this theory, intelligence is conceived of as a large, approachinginfinite,set

of elements. Tests are intercorrelated to the extent they share common

elements.

In fact, all correlations can be explained on the basis of shared elements.

IQ tests are complex and, therefore, consist of a larger number of elements.

Since these elements comprise a large portion of the total number ofele-

ments, it is likely that two IQ tests of high complexity will share a large num-

ber of elements and will, consequently, be highly correlated.

Basic cognitive tasks will include a smaller numberof elements. They will

accordingly share fewer commonelements with more complex IQ tests, and

will have lower correlations than IQ tests have with each other. Basic cogni-

tive tasks also will have lower intercorrelations with each other for the same

reason.

It is difficult to empirically distinguish this theoretical position from the

position which regards intelligence as a single thing. The reason forthis is

that, if a large sample is drawn from a larger population, the expected value

of the sample approaches a constant equal to the mean of the population

as the sample size approaches the population size or as sample size gets

very large. This means that a sample of elements could seem asif a single

element were operating having a numerical value equal to the mean of the

population.

Given the small numberof subjects usually used in psychological research,

it is very likely that it is impossible to distinguish whether results are due toa

single variable or a large sample of elements. Therefore,for all practical pur-

poses the two positions can be regarded as equivalent. If it is not possible to

show that a small number of independent elements can accountforintelli-

gence and g especially (as in the second theory discussed above), then it would

be necessary to distinguish the two possibilities represented by thefirst and

third positions.

In summary,there are three possible theoretical explanations of intelli-

gence. Intelligence as a single thing, and intelligence as a very large collection

of elements, are indistinguishable alternatives and can be regarded as single

alternative at least for the time being. For convenience, I will refer to this

combinedalternative as the explanation of intelligence in terms of a single

variable (or, simply, Model 1). The other position discussed will be called the

separate elements position (or Model 2).

Both Model 1 and 2 provide different explanations for generalintelligence

and, morespecifically, for g. Both models also accountdifferently for the

correlations of basic cognitive tasks with intelligence and with each other. Be-

cause of these differences between the two theoretical positions, basic cogni-

tive tasks, like choice reaction time, take on special meaning to thoseinter-

ested in obtaining a better understanding of humanintelligence.
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CHOICE REACTION TIME DATA

Others’ Data

In this brief review of the literature, the major emphasis will be on determin-
ing exactly what is known about individual differences in reaction time.
There is a long history of research on reaction time that is unconcerned with
individual differences time but that, instead, attempts to develop a general
(or nomothetic) model of reaction time (e.g., Grice, Nullmeyer, & Spikes,
1982; Pachella, 1974; Smith, 1968). Though this work is interesting, it is
largely irrelevant to understanding individual differences in reaction time.
Models based on group data have no necessaryrelationship to individualdif-
ferences on the sametask.

The literature on reaction time research can be divided into roughly three
periods. Thefirst period was discussed above, and consisted ofthe early ef-
forts to use reaction time to assess individual differences. The second period
beganin the early 1960s within the field of mental retardation. Thethird pe-

riod coversthe last 10 years, and has been led by researchers(particularly A.

Jensen) concerned with theoretical explanations ofintelligence.

Earlier data. An overriding concern in mental retardation research has

been to discover defective processes that might explain intellectual differ-

ences. Researchers explored a wide range of processesin search ofdeficits.

One process examined was mental speed. Theresults of this research have

been well summarized by Baumeister and Kellas (1968), who, along with

Berkson, were the major contributors of much of this work.

The major findingsof this research program areclear (thoughthereare, of

course, many secondary findings). Thefirst finding is that mentally retarded

subjects are, on the average, slower than their intellectually average peers.

The second finding is that mentally retarded persons are more variable in

their responding thanintellectually average persons. In fact, mentally re-

tarded subjects’ fastest responsesare no different than intellectually average

subjects’, but they make many more longerresponses.

Several otherlines of research have continued with the rationale employed

in the choice reaction time research with the mentally retarded. Inspection

time, defined as the amount of time required to make a simple discrimina-

tion, has been shownto be longerin the mentally retarded (Lally & Nettel-

beck, 1977; Nettelbeck, 1980; Nettelbeck & Kirby, 1983; also see Raz &

Willerman, 1985; Raz, Willerman, Ingmundson, & Hanlan, 1983 for the au-

ditory equivalent to inspection time). Keating and Bobbitt (1978) related a

number of cognitive measures, including speed measures, to developmental

level. Though a review of related research is beyondthe scopeofthis chapter,
the findings from this work can be summarizedas tending to reinforce choice
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reaction time results which show a relationship between intelligence and

speed.

Recent data. The resurgenceofinterest in choice reaction time has been

kindled by a deeperinterest in theoretical explanationsofintelligence. Pro-

ponents of gas

a

single thing have attemptedto find a measure of avery basic

process which would be correlated with intelligence. Tasks examined as po-

tential candidates were those that would seem to be related to important pro-

cesses like mental speed. Choice reaction time wasa natural candidate for ex-

amination, because it appeared to be a very simple task and becauseit could

be argued to be a measure of mental speed.

In a series of studies, Jensen and his colleagues (Carlson & Jensen, 1982;

Cohn, Carlson, & Jensen, 1985; Jensen, 1979, 1980, 1982a, 1982b, 1984;

Jensen & Munro, 1979; Vernon, 1981, 1983; Vernon & Jensen, 1984) have

made acasefor the relationship of choice reaction time to g. They have found

that choice reaction varies systematically across groups differing in IQ. Vari-

ability also has been shownto berelated to IQ. An attempt has been made to

argue that the slope oftheline fit to decision time as a function ofbits ofin-

formation (numberof alternatives or set size) in the display is related to IQ.

While there has been somecriticism of this research (Longstreth, 1984), the

major findings are consistent with the research done with the mentally re-

tarded. However, the conclusions regarding slope are based on group data

and are, therefore, less readily accepted. Nevertheless, Jensen and Vernon

(1986) come to the conclusion that slope is correlated about — .30 with IQ in

the population.

Jensen’s choice reaction time results have been supported in their essential

details by other investigators (e.g., Barrett, Eysenck, & Lucking, 1986;

Hemmelgarn & Kehle, 1984). But just because aspects of choice reaction time

can be showntoberelated to intelligence does not mean thatintelligence can

be equated with neural speed or efficiency, as some have suggested (e.g.,

Eysenck, 1982). The case, however, has been madestronger by neurophysio-

logical data.

Averaged Evoked Potentials (AEPs) have been shown, when appropri-

ately measured, to be highly related to intelligence (Haier, Robinson,

Braden, & Williams, 1983; A. Hendrickson, 1982; D. Hendrickson, 1982).

AEPsalso vary by IQ level in a fashion similar to choice reaction time mea-

sures (Jensen, Schafer, & Crinella, 1981).

Thereare at least two findings from Jensen’s choice reaction time research

that are difficult to square with a single-cause explanation of g. First, when

choice reaction time measures are combinedto predictintelligence, the multi-

ple correlation is .50 (Jensen & Vernon, 1986). Since the highest correlation

between IQ and a choice reaction time parameter is under .40, it can only be

concluded that there are at least two sources of variance contributingto this
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multiple correlation. It would take at least two variables to explain therela-
tionship between choice reaction time andintelligence.
The secondfinding inconsistent with g as a single thingis that the relation-

ship between choice reaction time and IQ increases with complexity of the
choice reaction time task. The relationship between task complexity and in-
telligence is incontestable. Lashley (1929) pointed it out in rats, and Tirre
(1986) has shownit with reaction time data. It would seem most reasonable to
concludethat this relationship occurs because, as a task becomes more com-
plex, more of the basic processesofintelligence are required to perform the
task.

New Data

The following studies have been conducted during the last 5 years with the
help of Jack Mayer, David Caruso, Peter Legree, and Fran Conners. All of
the studies used the basic methodology previously described and shown in
Figure 1. But, in each case, there were modifications to this procedure.

Mentally retarded/college students. The initial study involved two
groupsof subjects: 20 mentally retarded youngadults enrolled in special edu-
cation classes, and 20 college students. Because this wasthe first attempt at
obtaining choice reaction time measures, everything was donein an experi-
mentally correct fashion.

Trials were block-randomized so that a subject received a singletrial of

each set size before getting anothertrial of any set size. The set size on each

trial was apparent because when a trial began, an appropriate number of

empty “windows”appeared. The positions used were counterbalanced orders

of the eight possible locations. So a trial having a set size of one could have

the stimulus window appearin any one oftheeight locations. In addition,

each of the eight possible positions was equally often tested for eachsetsize.

There were 24trials for each of the set sizes (1, 2, 4, 8), for a total of 96trials.

Thechoice reaction time task was given with a set of other cognitive tasks, so

subjects were experienced with the apparatus. Instructions were given by a

voice synthesizer and all responses were madeby touching the touch-sensitive

screen. The experimenter answered any questions the subject had after in-

structions had been presented and ensured that the subject used only his in-

dex finger.

Results. The results of the choice reaction time task are shown in Table

1. Reliabilities are split-half correlations of alternate trials. The IQ test used

was the WAIS-R andthe Full Scale IQ from this test was correlated with

various parameters obtained from the task.

Decision time is the amountoftime required for the subject to removetheir
finger from the homeposition. Slope of DTis the slope of theline fit for each

subject to mean decision time for a set size andlog to the base 2 of that set
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TABLE1
Choice Reaction Time Measures for a Combined Sample of

20 Mentally Retarded and 20 Intellectually Average Subjects
(Time in Seconds,(Correlations) Corrected for

Restriction in Range)
 

 

Measure Mean SD Rel. r(IQ)

DT 46 21 99 — .47(— .29)

Errors 5.27 5.57 .98

DT Slope — 002 .014 30 — .05(— .03)

DT Int. .464 21 93 — .48(— .29)
 

size. Thus, each subject has four pairs of scores on which slope and intercept

were computed. Correlations for DT slope and intercept with IQ were ob-

tained by correlating the slope andintercept value obtained for each subject

with the subject’s IQ score.

Because the correlations are based on extreme groups of subjects (mentally

retarded and college-student), the combined data have an inflated standard

deviation. A correction for attenuation will have the effect of appropriately

reducing the obtained correlation to the correlation that would be expected in

the full population. It is this corrected correlation that should be consistent

Over experiments.

Examination of Table 1 indicates that mean decision time is correlated

with IQ about — .29. This agrees with what has been found by otherinvesti-

gators. However, several aspects of the data are not in agreementwith previ-

ous results.

A first problem is that the average slope is negative. This means that sub-

jects were actually faster on trials with more alternatives. That is, the more

information in the display the faster the subject responds. This makeslittle

sense. However, an examination of the data indicated that mentally retarded

subjects were producing the negative slopes and,in general, were highly vari-

able in their performance. This variability is reflected in the low reliability of

the slope measure. With regard to slope measuresof choice reaction time,

perhapsthe best conclusion is that the measureis not very reliable but that,

when standard experimental controls are employed, the slope measure ap-

proaches 0. Hick’s law maybe useful in describing data for a group, butit

does not appearto be useful in understanding individual differences. The in-

tercept measure, on the other hand, does appearto be reliable and correlates

with IQ,so it is difficult to argue that the task is somehow a poorone.

The use of standard experimental controls may or may not have been the

reason for the slope results. It is important to remember that trials were

randomized, so anytrial could be of anyset size. Some subjects could have

foundthis confusing.It also would be possible to randomly presentblocks of

trials of different set sizes. For example, a subject might receive a sequence of
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6-trial blocks, each trial within the block havinga setsize of1, 8, 4, 2, 6, 8, 2,
6, 1, and 4. This would randomly mix order but would give subjects succes-
sive trials on a fixed set size. These results do indicate that ordereffects in the

choice reaction time task are far from well understood.

High school students. Because of problemsin the previous study, the

choice reaction time task was modified to moreclosely correspond to the

methodology used by Jensen. A six-alternative block of trials was added

increasing total numberoftrials to 120. Trials were presented in an ascend-

ing, blocked format(sets of 1, 2, 4, 6, and 8 alternatives were presented in

that order). In addition, the position of alternatives was fixed. Alternatives

were always presentedin the positions closest to the top center of the semicir-

cular array of “windows.” Additional measures of performance including

trial time (TT) were collected. TT was the total amountof time to complete a

trial.

Subjects for this experiment were randomly selected from the graduating

class of a large suburbanhigh schooluntil a sample of 141 had agreedto par-

ticipate. The sample contained mentally retarded subjects who had metthe

requirementsfora certificate of attendance. The range of WAIS-RIQ scores

was from 50 to 150, and the meanof the sample was 108, with a standard de-

viation of 15. The IQ scores of subject’s in the sample were almost perfectly

normally distributed. Because this sample so closely approximated the popu-

lation, no correction for attenuation was applied.

Results. Full results are shown in Table 2. Asin the previousstudy,deci-

sion time was correlated with IQ about — .32. Movement time showedthe

same correlation. The DT slope and intercept measuresalso replicated the re-

sults of the previous study. DT slope increased by about 20 millisecondsas

each bit of information was added. Though groupdataare very consistent in

showing Hick’s law, individual data are far less reliable and show only a

TABLE 2
Choice Reaction Time Measuresfor a Sample of 141

High School Students (Time in Seconds)
 

 

Measure Mean SD Rel. rdIQ)

DT 44 .08 .94 — .32

MT 22 .05 .90 — 32

SD of DT 21 14 .66 — .16

DT Slope .02 .03 34 — .04

DTInt. 41 10 84 — 24

MTSlope .007 .02 .65 — .01

MTInt. .20 05 .82 — .30

TT 3.85 .90 — .09

SD of TT 2.52 1.22 13
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— .04 correlation with IQ (— .07 corrected for unreliability). The reliability

of .34 is unacceptably low, but was approximately the same as was obtained

in the previous study and in theresearch of others.

Despite differences in sample characteristics, there are a numberofstrik-

ing similarities between this and the last study. DT and MTare about the

same, and MTis about half of DT in both studies. The slope of DT is the

samein both studies, and DT correlates with IQ about the samein both stud-

ies. Indeed, it can be concludedthat this study replicates the last in all essen-

tial details. These results are also in agreement with those reported by Jensen

and Vernon (1986).

Air Force Enlistees. This study was a replication of the previous one,

with a few modifications. Most importantly, touch screens were not used for

response input. Instead, subjects used the computer keyboard. To begin a

trial, they touched the space bar and madea responsebypressing the appro-

priately numbered key. Each “window”in the display had a numberaboveit

to indicate the appropriate response. Windowsalways had the same number

above them, which wastheir serial order (from the left) in the full set of

alternatives. Instructions were written on the computerscreen instead of spo-

ken by a voice synthesizer. All subjects were administered the test in a com-

puter laboratory with 30 stations.

Subjects were 860 Air Force enlistees. All subjects had taken the Armed

Service Vocational Aptitude Battery (ASVAB), whichis a heavily g-loaded,

group-administered written test. Correlations of choice reaction time mea-

sures were computed with the General composite from the ASVAB.(There-

sults are not appreciably different if factor scores from thefirst principal

component of the ASVABsubtests are used in place of the General compos-

ite.) The General composite score is regarded, for present purposes, as an IQ

score. It should be noted that, unlike the previous two studies, the ASVAB

was not administered concurrently but could have been given as much as a

year before the subjects completed the choice reaction time task.

A definite problem with this sample is that it has undergone explicit selec-

tion. Almost no person in the sample is below the 40th percentile on national

norms, and proportionally fewer subjects are included at the high end of the

enlistee distribution. Irregularities in the obtained sample were corrected by

weighting cases. Explicit selection was corrected for by applying the appro-

priate correction for restriction in range.

Results. Results are shown in Table 3. What is immediately apparentis

that using a keyboardin place of a touch screen had a substantial slowingef-

fect on both DT and MT.Interestingly, DTis still about twice as long as MT.

It would appear that the use of the keyboard hasnotdifferentially affected
separate componentsof this task.

DT correlates — .33 with IQ after correction for selection. From the three
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TABLE 3
Choice Reaction Time Measuresfor 860 Air Force Enlistees

(Time in Seconds,(Correlations) Corrected for
Restriction in Range)
 

 

Measure Mean SD Rel. r(IQ)

DT .68 12 .88 — .18(— .33)
MT 31 .10 .88 — .08(— .16)
DT Slope .04 .07 59 .04(.07)
DT Int. 61 18 .64 — .15(— .28)
MT Slope .018 .06 72 .07(.13)
MT Int. 28 16 77 — .10(— .18)
Errors 2.30 2.78 55 .07(.12)
SD of DT 18 15 .64 .17(.31)
TT 5.34 29 .82 — .16(— .29)
SD of TT 1.01 36 .69 — .10(— .18)
 

studies presented here and research donebyothers, there can belittle ques-
tion about the relationship between DTandintelligence. The correlation is
about — .30 in the general population.
When the various measures obtained from the choice reaction time task are

combinedto predict g (unrotated first principal componentfactorscores),
the multiple correlation, corrected for attenuation and unreliability, is .46.
This compares favorably with the .50 obtained by Jensen and Vernon (1986).
This consistency argues for similarity of the tasks.

Anotherfinding consistent with my previousfindings (but not Jensen’s) is
that slope measuresfor individual subjects do not correlate with measures of

intelligence. In all three studies reported here, the correlation of slope with

intelligence was nearly 0. Previous reports of slope relationshipsto intelli-

gence have been based on meanslope values for groupsof different IQ levels.

Correlating mean IQ with mean slope differences for groups of subjects

would producelarger correlations than those existing amongindividual sub-

jects in the population as a whole. The results obtained on a task similar to

Jensen’s do not support his conclusions concerning the slope-IQ correlation

of — .30in the general population, but do support his conclusions concerning

the relationship of 1Q and other measuresof choice reaction time.

A serious qualificationis that the slope of DT hasnotyielded a highly relia-

ble measure even with the liberal split-half procedures used here. An exten-

sive effort was made to make the slope measureasreliable as possible but

with little success. Statistical corrections for unreliability were not applied,

becausethere is substantial doubt whether such corrections would reflect an-

ything even remotely attainable in practice. Even if the correlations obtained

are corrected for unreliability, they wouldstill be small —all less than — .15.

From the results obtained here, it would appear that derived measureslike

slope and intercept are much more difficult to make acceptably reliable than
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direct measureslike latency or errors. But there would have to be much more

compelling reasons before beginning an effort to make them reliable. Evi-

denceso far obtained suggests that, even if perfect reliability were achieved, a

slope measure would provide verylittle important information about indi-

vidual differences.

If slope measures are unimportant, is there any useful purpose for a choice

reaction time task that varies the numberof alternatives? Table 4 shows data

for each numberof alternatives. Though mean DT and MTchangesystemat-

ically, correlations with IQ do not increase asset size increases. In fact, for

movementtime the correlation with IQ would appear to decrease asset size

increases.

Reliability was computed by comparing thefirst 12 trials to the last 12

trials for each set size. Across blocks of increasing set sizes (which were ad-

ministered in ascending order), reliability generally increases for both DT

and MT.This suggests that subjects become more consistent with practice.

Becauseof this trend,it is possible to speculate that the DT x IQ correlation

may be produced by different processes in early and late set size blocks.

Trials with only one alternative administered first may correlate with IQ be-

cause subjects are learning about the task and the faster they learn about the

task the better their performance. On the other hand, in the last block of

trials in which there are eight alternatives, the DT correlation with IQ mayre-

flect differential response to complexity.

It should be rememberedthat this study used a large numberof subjects (N

= 860). Further, the procedures used have gone through an extensive devel-

Opmentprocess to ensure that the parameters obtained from the task are as

reliable as they could be made.If these factors are taken in conjunction with

the observation that the results of this study replicate the general findings of

the two previousstudies, there would seem to belittle doubt concerning the

relation of reaction time to IQ.

TABLE4
Decision Time and Movement Time for Each Choice Set Size
for 860 Air Force Enlistees (Time in Seconds,(Correlations)

Corrected for Restriction in Range)
 

  

 

Decision Time Movement Time

Set Size Mean Rel. r(IQ) Mean Rel. r(IQ)

1 .63 59 — 29 .30 .70 — 18

2 .63 .77 — 22 .27 .66 — .12

4 .69 .83 — 27 30 71 — 15

6 .72 .82 — .28 .33 .78 — .06

8 .74 .85 — 27 35 .78 — .08
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General Conclusions

There are a numberof conclusions that can be drawn about choicereaction

time as a measure of individual differences. First, there can belittle doubt

that decision timeis correlated — .30 with IQ. Whetherthis is regarded as a

small or large relationship is a subjective judgement. Further, there are many

potential explanations of this relationship.

A second conclusion to be drawnis that the slope of decision time appears

to have little relationship to individual differences in intelligence. Though

Hick’s law may(and doesin the data presented) hold for group data,individ-

ual variations in slope do not accountforintellectual differences. This con-

clusion can be temperedslightly by the fact that a highly reliable measure of

slope is difficult to obtain and was not obtained in the data reported here.

A third conclusion is that movementtime hasa variable but significantre-

lationship to intelligence. In somestudies, the relationship wasas high as the

relation of DT to IQ while in others it was substantially lower. The simple

modelpresented earlier does not explain whythis should beso.

Generally, it would appear that a rather simple, direct picture of the rela-

tionship ofintelligence to choice reaction time emerges from the researchpre-

sented here. Makinga case that decision time is a measure of mental speed,

and the single variable defining g, would not be difficult. That argument,

however, would not explain a numberof the more complex relationships ob-

tained in these data and in other studies.

IS CHOICE REACTION TIMEA SIMPLE TASK?

Those who argue that choice reaction time measures reflect mental speed

whichis the single variable producing g make a major assumption. Theyas-

sume that, because choice reaction time appearsto be a simple task,it actu-

ally is simple, and that the parameters obtained from it are pure measures of

unitary processes. Though Jensen and Vernon havenotexplicitly argued that

gis aunitary process, they have been definite in their assertion that choicere-

action time (whichtheycall the Hick paradigm) is a very simple task:

This [the relationship between choice reaction time measures and g-loaded

tests] is of major theoretical interest, because the Hick paradigm involves no

knowledge content, no reasoning, no problem-solving, no “higher mental pro-

cesses,” in the generally accepted meaning of these terms, and it has about aslit-

tle resemblance to conventional unspeeded psychometrictests as one could pos-

sibly imagine. (Jensen & Vernon, 1986, p. 156)

Is this the case? I will arguethat it almost certainly is not, that choice reac-

tion time is far more complicated than it appears on the surface.
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Processes That Should Be Investigated

In the course of conducting the research reported here, a numberof things

that may be important to understanding the processes involved in choice re-

action time have suggested themselves. Some are supported by data either

from this research or the research of others, while others are based only on

observation and anecdote.

Understanding Instructions. Even slight differences in understanding

instructions could have substantial impact on theresults. It is probably un-

reasonable to assume that subjects develop equivalent mental representa-

tions of the choice reaction time task even with fairly extensive instructions.

Even though subjects may fully understand how to perform thetask after

instruction, they may cometo very different conclusions aboutaspects of the

task not included in the instructions. For example, different subjects may se-

lect to hold their heads at different distances from the computer monitor

screen. This would affect the portion of the screen that falls on the fovea,

which would,in turn, affect perceptual sensitivity. Subjects also mightinter-

pret the instructions to maketheir response as quickly as possible.

In the work with Air Force enlistees it was found that early blocks wereless

reliable than later blocks (see Table 4). Since reliability was assessed by

comparing first to last half of each block, this result indicates that subjects

became moreconsistent in their performance overtrials. Subjects might be

more variable on early trials because they are experimenting with various

ways of doing the task, including holding their heads at different distances

from the screen and trying different degrees of speededness. This experimen-

tation is almost required of subjects in experimental tasks they are given,

since instructions are generally brief and thereis little effort to ensure that

subjects have equivalent instantiations of what is instructed.

Familiarity with equipment. A subject whohas familiarity with a type-

writer keyboard might have an advantage over an inexperienced subject, if

responses are made on the keyboard. On the other hand, if responses can

only be made with the index finger and they use a small set of keys (as was the

case in myresearch), subjects with typing skills might experience interfer-

ence. At an even morebasic level, subjects with little or no exposure to com-

puters might react quite differently to computer-administered tasks than sub-

jects who had some experience. This could be an obvious factor in cross-

cultural research, but could also affect the performance of retarded subjects

who haveless computer experience.

Motivation. Little attention has been given to the effects of motivation

on individual differences in reaction time. While higher levels of motivation

would probably havelittle effect on the fastest reaction times they might well

influence variability. One easy way to increase motivation onthe choicereac-

tion time task would be to provide subjects with feedback.Asthetaskis cur-
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rently structured (and most otherbasic cognitive tasks for that matter), there
is no way for a subject to knowif heorsheis doing wellor not. This certainly
must have some impact on performance.

Surprising as it may seem, subjects ordinarily report that they enjoy the
choice reaction time task so feedback may be unimportant for motivation.
As an experiment, I modified the reaction time task to provide scoreboard
feedback like that provided in many video games. Althoughthis version of
the task has not been used extensively enough for conclusive evaluation,it
does seem to have a much more game-like quality which encourages morein-
tense attention to performance on eachtrial.
Sensory acuity. Sensory variables have been givenlittle or no attention

as causative factors in individual differences in choice reaction time. How-
ever,it is well knownthat visual defects are more common amongthe men-
tally retarded. Certainly sensitivity to stimulus change depends in part on
sensory acuity. Sensory acuity also could have secondaryeffects on such pro-
cesses as search strategy, eye movements, and other perceptually related
parts of the task.

Speed-accuracy tradeoff. There is almost certainly a relationship be-
tween speed and accuracy in choice reaction time. In the data presented
above, errors showeda negative correlation with IQ. However, Brewer and

Smith (1984) have provided a more substantial demonstration. The task they

used was somewhatdifferent in that several fingers were used to makea re-

sponse. Each subject completedliterally thousands of trials on this task.

Whenan error occurred, performancebefore andafterthe errortrial was sys-

tematic. Before an error, a subject would becomeprogressively faster but

after an error was committed a dramatic slowing of responding would occur.

This slowing was muchgreater for lower IQ subjects.

This research suggests that subjects actively seek an optimum levelofre-

sponding which maximizes speed and minimizeserrors. It also explains why

mentally retarded subjects are more variable. Because they makelarger cor-

rections in speed after an error but do respond as quickly as other subjects on

their fastest trial, they are more variable overall. Findings from this research

indicate that any model which fails to considertrial to trial changes in per-

formance in incomplete. Clearly, the model shownin Figure 1 cannot be a

complete description of performance on the task, because no memory for

past trials is included.

Attention. How longit takes a subject to notice stimulus onsetis at least

partially a function of attentional mechanisms. By head movement,a subject

could select how muchofthe display is to be kept in foveal vision. Different

subjects might also select very different criteria for deciding when stimulus

onset has occurred. The degreeorintensity of attention might have consider-
able effect on performance,although there is no wayto judge this from cur-

rent data.

Memory factors. There are a number of ways that memory factors
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could affect performance ona choice reaction time task. Differences in mem-

ory for previoustrials could affect the criterion subjects set, or how willing

they are to risk an error. Memorydifferences also could affect how well in-

structions are remembered, and the degree to which experiences on previ-

ously done similar tasks are used. In a task which employs responses not

madedirectly to the stimulus as on a computer key board, the subject must

rememberthe correct response while searching for the place to makethatre-

sponse. This could produce memory problems for some subjects.

Search strategy. In achoice reaction time, the way in which alternatives

are searched for stimulus onset could have a significant impact on decision

time. Though some attention has been given to search strategies (e.g.,

Welford, 1980), thereis still not adequate information concerningindividual

differences. Mentally retarded subjects are generally poorer at search tasks

and at devising and using strategies. As commonas such behaviors are

amonglow IQ subjects, it would seem highly unlikely that search strategy in

choice reaction time would not vary across IQ levels.

Responseselection. An introspectively important component of choice

reaction time is response selection. Complicating the response component

can makechoice reaction time a much moredifficult task. A comparison of

Tables 2 and 3 show that, when the method of response changed from touch

screen to keyboard,it took twice as long not only to respond (MT)butalso to

decide to respond (DT). Evidently, response complexity affects decision

processes.

Response execution and use of feedback. Most models of choice reac-
tion time suggest that, once a responseis selected, the selected responseis

simply executed. This sort of model would suggest that, if the response had to

be changedin the middle of execution, it would not be possible to do it. In or-

der to modify a response, some form of feedback (or parallel processing)

would be needed during response execution. The subject would have to be

continually verifying the validity of his response.

Such a feedback process must almost certainly occur. It seems highly un-

likely that, once a subjectlifts his or her finger from the homekeyindicating

responseselection, it would be impossible for him or her to changehis or her

response. Rather, observation of subjects and introspection while doing the

task would seem to indicate that the response being executed is continually

being monitored for correctness.

That subjects monitor their responses is no small point. It means that

manyofthe processesthat subjects use in initiating the response are used also

while making the response. This would make the response execution phase an

extremely complex one. It also would explain why movementtime can be cor-

related with IQ.

Additional evidence. Karrer (in press) has reported a series of ex-

tremely interesting studies of simple reaction time tasks with mentally re-

tarded and intellectually average subjects. Whatis particularly interesting
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abouthis research is that electrophysiological measures were combined with
behavioral measuresto slice a reaction-time task into smaller components.
For example, finger muscle recording could be used to time responseinitia-
tion, and AEPscould beutilized to mark the onsetofcentral processing. The
conclusions Karreris able to come to, usingthis finer-grained measurement,
are surprising.

First, the major source of slowness in simple motortaskslike simple reac-
tion timeis the process of responseinitiation or beginning a motoract. Sec-
ond, and perhaps even moresignificant, was the finding of “differences in
the patterning of neural activity across the brain regionsin the retarded that
could be associated with differencesin structures orin strategies of task per-
formance”(ms.p. 24). Third, it was possible to show that mentally retarded
werelike intellectually normal peers on some task components, but differed
on others. These findings hardly support the conclusion that simple reaction
time is a simple task. Taken with the possibilities discussed in the previous
paragraphs, it would take tremendously strong evidence to convince methat
choice reaction timeis as simple a task asit initially appears.

A Possible Model of Choice Reaction Time

It is clear that the simple model shownin Figure 1 lacks sufficient detail to
account for observed performance on the choice reaction time task. Al-
thoughit might not be possible or even useful to attempt to develop a model

complete enoughto includeall of the factors discussed above,it is possible to

specify the general form such a model might take. Two general types of

changes would have to be madeto current models: existing processes would

have to be elaborated and new processes would have to be added.

The elaboration of processes might include the sorts of divisions Karrer

has developed using electrophysiological measures. Thereare also other pos-

sibilities, such as the use of eye movements to observevisual search strategy.

Refinementof process description will require refinement in measurement.

The processes to be added to current models include a motivational and

attentional component, a componentrepresenting the functional set of in-

structions, and a memorial representation of speed-accuracy tradeoff func-

tions andstrategic knowledge, to name a few. Choicereaction time will not

be completely understood until these sorts of processes are understood. For

example, it would be difficult to interpret cross-cultural choice reaction time

research without a more adequate knowledge of these processes.

Relation of Model to IQ

The complexities of understanding choice reaction time andits relationship

to intelligence are really no different than the problemsin understanding any
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basic cognitive task. A reasonable model of the task must be developed.

Ways to measure the parameters of the model as reasonably independentof

other parameters as possible must be developed. The independent parame-

ters of the model can then be correlated with g to see which are most involved

in intellectual functioning. But perhaps most importantof all, the parame-

ters found in any one basic cognitive task must be shownto beused in other

tasks or the particular parameter has no convergentvalidity andis oflittle

theoretical use.

If all of these steps are accomplished, the relationship between choice reac-

tion time parameters andintelligence would beclear. A list of the processes

employed in choice reaction time and the proportion of variance each con-

tributes to general intelligence could be specified. This, of course, assumes

that the preceding analysis is correct.

Whatif g is actually caused by a single variable? The problem is that this

will be very difficult to demonstrate, even in the unlikely case thatit is true. In

fact, it is very much like attempting to prove the null hypothesis, with the ex-

ception that,if all other things are equal, parsimonyprevails. But before par-

simonydecides the issue, it would be necessary to provide a precise theory of

mental speed (or the single explanatory variable, whatever it is) which ac-

counts for all of the relationships between intelligence and choice reaction

time measures. No such model has yet been offered.

A Proposed ResearchStrategy

Research with the choice reaction time task can make a valuable contribu-

tion to our understandingofintelligence. However,it is unlikely to fulfill its

entire potential if it is investigated alone. Establishing convergent and dis-

criminant validity demandsthat findings from choice reaction time research

be reinforced by similar research with other basic tasks. Any systematicre-

search effort should, therefore, include at least two basic tasks.

The need for additional refinement of parameters will require the intro-

duction of increasingly sophisticated measurement methods. With comput-

ers it is now possible to simultaneously acquire behavioral, motor, eye move-

ment, and electrophysiological data. Obtaining such data would makeit

possible to divide the choice reaction time task into much smaller stages.

Just refining measurement will not produce insight. Refinement in meas-

urement must be driven by moresophisticated theory. With few exceptions,

individual difference researchers have madeall toolittle use of mathematical

modeling and simulation techniques to develop plausible models of intelli-

gence and basic cognitive tasks which could explain the relationship between

the two. There needs to be muchgreatereffort to develop mathematically ex-
plicit models.

Finally, research on individual differences has been plagued by small
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sample sizes and by samples drawn from poorly specified populations.It is
difficult to come to any firm conclusions with a small number of subjects.
Thoughlarge sample sizes are expensive and difficult to obtain, they are ex-
tremely important for good individual differences research.
Whatis required, then, is a research program which uses multiple basic

tasks, employs extremely sophisticated measurement techniques to collect
data for each task, begins from a precise model of performance on eachtask,
makes predictions supported by simulation, and uses ample sample sizes in
the experimental confirmation of predictions. When such a research pro-
gram is launched, wewill be well on our way to understanding the important
relationship between choice reaction time measures and intelligence.
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CHAPTER 6

A Context for Understanding
Information Processing

Studies of HumanAbilities

John Horn
University of Southern California

DIFFICULTIES IN DISTINGUISHING HUMANABILITIES

Muchis known about humanabilities, but much moreis not known. That

which is known appears under many headingsin thescientific literature.It is

difficult to summarize it in an organized system. The information canbe or-

ganized in different ways.

One way to organize the information is in terms of the magnitudes of

intercorrelations among different ability measures (Cf. Cronbach, 1970;

Horn, 1968, 1972, 1986b). Seen in this way,abilities range from very broad to

very narrow. A broadability is one for which the average of the intercor-

relations among different measures of the ability is small, although signifi-

cantly different from zero. A narrow ability is one for which the average of

the intercorrelations among different measures of the ability is large, al-

though somewhat smaller than the reliabilities of the measures.

A fairly narrow ability is indicated by the following measures:

e Visual Matching. . . Under constraints to respond quickly, the subject

must find 1-to-S-digit numbersthat are the same amonga list of six such

numbers.
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e Spatial Relations . . . Under constraints to respond quickly, the subject
must determine which two or three shapes amongsix choices (in a two-
dimensional plane) fit together to form a displayed whole.

e Visual Scanning . . . Working as quickly as possible over a short period
of time (e.g., 2-minute trials), find as manyletter ds as possible on a
sheet of paperfilled with the letters of the alphabet.

This ability is often referred to as (visual) Perceptual Speed (P), and
thereby identified with a primary ability—i.e., factor among what has be-
come knownasthe 24 well-replicated commonfactors of cognitive perform-
ances (Ekstrom, French, & Harmon,1979). Theintercorrelations amongdif-
ferent measures of Perceptual Speedare typically in the .65 to .75 range when
the reliabilities of the measuresare of the order of .75 to .85.
Whata test measures dependsin part on the wayit is administered. This

can be seen in the Spatial Relations test of the P factor. If this test is given
with liberal time limits (without constraints to work quickly) and the items
are of sufficient difficulty, it measures a Visualization, Vz, primary ability,
rather than P (Ekstrom, French, & Harman, 1979). The sametest given un-
der different conditions measuresa different ability.

At the other end of a continuum from narrow are broad measures ofgen-

eral intelligence, often symbolized as IQ or g or G. The breadth of a measure

of IQ varies greatly from one study to another, reflecting the fact that differ-

ent batteries of tests involve more and fewertests of different abilities (Horn

& Goldsmith, 1981). IQ tests can be narrow, but, often, researchers, counsel-

lors, and people in general suppose that general intelligence is broad —a di-

verse collection of abilities. Let us consider some examples of broad mea-

sures of g (1.e., IQ).

IQ might be measured by summingthe 12 Cognitive Ability subtest scores

of the Woodcock-Johnson Psycho-Educational Battery (WOJ; Woodcock &

Johnson, 1977), or the 10 Mental Processing subtests of the K-ABC (Kauf-

man & Kaufman, 1983a,b), or the 17 subtest scores of the McCarthyScales

of Children’s Abilities (McCarthy, 1972). The following labels indicate the

breadth of IQ measures formed in these ways.

Subtests of the WOJ

Cognitive Abilities (CA) Test of Achievements (TOA)

CA Picture Vocabulary TOA Humanities

CA Antonyms-Synonyms TOA Social Studies

CA Quantitative Concepts TOA Science

CA Verbal Analogies TOA Applied Problems

CA Analysis-Synthesis TOA Calculations

CA Concept Formation TOA Letter-Word

CA Visual Auditory TOA Dictation

CA Memoryfor Sentences TOA Proofing
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_ Subtests ofthe WOJ (continued)

CA Spatial Relations TOA Passage Comprehension

CA Visual Matching

CA Blending

CA Numbers Reversed

Subtests of the K-ABC

Mental Processing Subtests (MPS) Tests Of Achievements (TOA)

MPS Matrix Analogies TOA Riddles

MPS Spatial Memory TOA Reading Decoding

MPS PhotoSeries TOA Reading Understanding

MPS Gestalt Closure TOA Expressive Vocabulary

MPS NumberRecall TOA Faces and Places

MPS_ Triangles TOA Arithmetic

MPS Magic Window

MPS Face Recognition

MPS Hand Movements

MPS WordOrder

Subtests of the McCarthy

Block Building Imitative Action

Conceptual Grouping Verbal Memory

Number Questions Draw-a-Design

Opposite Analogies Picture Memory

Counting & Sorting Numerical Memory

Word Knowledge Verbal Fluency

Puzzle Solving Draw-a-Child

Leg Coordination Tapping Sequences

Arm Coordination

A measure formed by combining the CA subtests of the WOJis narrower

than a measure obtained by summing both the CA and TOAofthis test. Both

the narrower and the broader measure are referred to as IQ or g. A very

broad measure mightbe obtained by summingall the subtest scores of both

the WOJ and the K-ABCor the K-ABCandthe McCarthyor a combination

of the subtests ofall three of these tests. Even broader measures of g can be

envisioned (Humphreys, 1979, Jensen, 1984).

While measuresofg are usually broad indeed, measures of whatis called g

can be narrow, too. The measure obtained with the matricestest is narrow,
for example. The best known example of such a measureis obtained with the
Raven Progressive Matrices (Raven, 1977). This narrow measureis regarded

by some psychologists as a quite good indicator of g (Jensen, 1973).

Wesee, then, that the breadth of measure of a cognitive ability is a func-

tion of the extent to which different kinds of componentabilities — different

subtest measures — are included in the measure.Asdiversity increases, the av-
erage of the intercorrelations among componentsof the measure decreases.
Typically, the intercorrelations among different components of a multi-
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subtest measure of IQ are about .45, but, if measuresof artistic abilities, mu-

sical abilities, or athletic abilities are among the components, the average of

the correlations (still almost alwayspositive) can drop below .20, perhaps to

.15, depending on the numberof measuresof each kind ofability, the hetero-

geneity of the battery, the evennessof the distribution across different kinds

of abilities, and other factors (e.g., the reliabilities, the age of the subjects).

Wesee, then, that humanabilities can be defined partly in terms of breadth

(broad-to-narrow)andpartly in terms of conditions of administration (high-

to-low constraints to work quickly). Many other such parameters of descrip-

tion have been used. Guilford (1967) has attempted to develop a taxonomy by

exhaustively identifying such parameters. The following labels indicate the

major categories of Guilford’s system:

Contents: Products:

F Figural U__—siUnits

S Symbolic C Classes

M Semantic R___ Relations

B Behavioral S Systems

T Transformations

I Implications

Operations:

E Evaluation

N Convergent Production

D Divergent Production

M Memory

C Cognition

In Guilford’s system, an ability test is defined by a particular combination of

one operation, one content and one product. For example, a multiple choice

vocabularytest is described as “Cognition of Semantic Units, CMU.” “Cog-

nition is [defined as] awareness, immediate discovery or rediscovery, or rec-

ognition of information in various forms. Units are relatively segregated or

circumscribed items of information having ‘thing’ character. . . . Semantic

information is the form of meanings to which words commonly becomeat-

tached . . . although we must recognize [also] that much semantic informa-

tion is nonverbalized” (Guilford, 1967, pp. 71, 227).

There are 4 x 5 X 6 = 120 different three-way combinationsof four con-

tents, five operations and six products. This is the numberof tests one might

construct on the basis of Guilford’s system. Does this correspond to the num-

ber of distinct abilities humans possess?

There are two answersto this question. First, 120 is probably an under-

estimate of the numberof separable humanintellectual abilities; second,it is

doubtful that the 120 abilities of the Guilford system are reliably andvalidly

distinct. Let us examinethe basis for this last statement.

The Guilford system derives partly from logic, and partly from the evi-
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dence of empirical research. The main research supportfor the system isindi-

cated in the Ekstromet al. (1979) integration of results from first-order fac-

tor analytic studies. That integration of results indicates 24 well-replicated

ability factors, and some13 factors for which there is some, but not well rep-

licated, evidence. Brief descriptions of these abilities are provided in Table 1.

It can be seen in the table that roughly 25-30 of the three-way combina-

tions of Guilford’s system are associated with abilities for which there is em-

pirical evidence from factor analytic studies. This concordance comes about

partly because Guilford based his system, post hoc, on these factor analytic

findings. The theory of the system is not supported bythese findings:it is an

outgrowth of them.

Unfortunately, the studies (by Guilford and his coworkers) designed to

add to this evidence have been hampered by lack of objectivity (Carroll,

1972; Horn, 1967; Horn & Knapp, 1973, 1974; Humphreys, 1962; Undheim

& Horn, 1977). The results from this work indicate that there is not a good

basis for retaining manyofthe major hypotheses of Guilford’s system. Some

of the three-way combinations of the Guilford system represent empirically

based distinctions between established primary mentalabilities, but many of

the combinationsare only logical indications of ways to construct tests, not

indicationsof distinct humanabilities. They do not indicate distinctly differ-

ent processes of thinking such asare linked together when a person solves a

problem. As Humphreys (1962, p. 476) pointed out, the facets of the

Guilford system “are not psychological as defined. They should be useful to

the test constructor, [but] they do not need to make a behavioral difference.”

The difficulties with the Guilford structure of intellect system obtain as

well for other efforts to provide an empirically sound basis for distinguishing

among different humanabilities. There is no thoroughly acceptable system.

Distinctions drawn on the basis of different contents or operations or prod-

ucts can be useful, but they are not sharp (Horn, 1972).

Consider the problem of making sharp distinctions. Look at a test de-

signed to measure Spatial Orientation, S, as an example. This represents

an hypothesis that humans differ in a cognitive process of perceiving (com-

prehending, seeing) differences among similar spatial objects. In a test to

measure this ability, one must explain to people what they are to do,and indi-

viduals differ in abilities of understanding explanations. A test to measure

the S ability thus involves, to some extent, a measure of Verbal Comprehen-

sion, V. This is true, not only because V facilitates understanding the instruc-

tions one must understand in order to do well on spatial tasks, but also be-

cause performance on spatial tasks can be (in some people) facilitated by

verbalizing and using the ability of V. It is true, also, because both S and V

can spring from the same determiners (genetic and/or environmental). There

are many reasons why measuresof S and V cannotbeentirely independent.

Different levels of breadth of abilities also are not sharply distinguished. A
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TABLE1
FIRST-ORDER (PRIMARY) MENTALABILITIES

After Ekstrom, French, and Harman(1979)
 

 

SHORT-TERMAPPREHENSIONAND Guilford

—

French Well
RETRIEVAL ABILITIES Symbol Symbol

_

Replicated

Associative Memory. Whenpresented with one element MSR Ma Yes
of previously associated but otherwise unrelated

elements, recall associated element.

Span Memory. Immediately recall a set of elements after MSU Ms Yes
one presentation.

Meaningful Memory. Immediately recall a set of items MSR Mm ?

that are meaningfully related.

Chunking Memory. Immediately recall elements by MMC No

categories into which elementswereclassified.

Memory for Order. Immediately recall the position of MSS No

an element within a set of elements.

LONG-TERM STORAGE AND RETRIEVALABILITIES.

Associational Fluency. Produce wordssimilar in DMR Fa Yes

meaning to a given word.

Expressional Fluency. Produce different ways of saying DSS Fe Yes

much the samething.

Ideational Fluency. Produce ideas about a stated DMU Fi Yes

condition or object —e.g., a lady holding a baby.

Word Fluency. Produce words meeting particular DMR Fw Yes

structural requirements —e.g., ending with a

particular suffix.

Originality. Produce “clever” expressions or DMT O Yes

interpretations —e.g., titles for a story plot.

SpontaneousFlexibility. Produce diverse functions and DMC Xs Yes

classifications —e.g., uses for a pencil.

Delayed Retrieval. Recall material learned hours No

before.

VISUALIZATION AND SPATIAL ORIENTATIONABILITIES.

Visualization. Mentally manipulate forms to “see” how CFT Vz Yes

they would look underaltered conditions.

Spatial Orientation. Visually imagineparts out of place CFS S Yes

and put them in place—e.g., solve jigsaw

puzzles.

Speed of Closure. Identify Gestalt when parts of whole CFU Cs Yes

are missing.

Flexibility of Closure. Find a particular figure NFT Cs Yes

embeddedwithin distracting figures.

Spatial Planning. Survey a spatial field and find a path CFI Ss Yes

throughthe field—e.g., pencil mazes.

Figural Adaptive Flexibility. Try out possible DFT Xa Yes

arrangements of elements of visual pattern to

find one arrangementthatsatisfies several

conditions.
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TABLE1 (Continued)
 

 

VISUALIZATIONAND SPATIAL Guilford French Well

ORIENTATIONABILITIES Symbol Symbol  Replicated?

Length Estimation. Estimate lengths or distances Le Yes

between points.

Figural Fluency. Produce different figures using the DFI No

lines of a stimulus figure.

Seeing Illusions. Reportillusions of such tests as Muller- DFS No

Lyer, Sanders, and Poggenforff.

ABILITIES OF LISTENING AND HEARING.

Listening Verbal Comprehension, Va. Show No

understanding of oral communications.

Temporal Tracking, Tc. Demonstrate understanding of No

sequence of auditory information —e.g., reorder

a set of tones.

Auditory Relations, AcoR. Show understanding of No

relations among tones —e.g., identify separate

notes of chord.

Discriminate Patterns of Sounds, DASP. Show No

awareness of differences in different

arrangements of tones.

Judging Rhythms, MaJR.Identify and continue a beat. No

Auditory Span Memory, Ma. Immediately recall a set of No

notes played once.

Perception of Distorted Speech, SPUD. Demonstrate No

comprehension of language that has been

distorted in several ways.

ACCULTURATIONAL KNOWLEDGEABILITIES.

Verbal Comprehension. Demonstrate understanding of CMU V Yes

words, sentences and paragraphs.

Sensitivity to Problems. Suggest ways to deal with EMI Sep Yes

problems —e.g., improvements for a toaster.

Applying Conventional Logic. Given stated premises EMR Rs Yes

draw logically permissible conclusions even

whenthese are nonsensical.

NumberFacility. Do basic operations of arithmetic NSI N Yes

quickly and accurately.

Verbal Closure. Show comprehension of words and No

sentences when parts are omitted.

Estimation. Use incomplete information to estimate CMI No

whatis required for problem solution.

Behavioral Relations. Judge interaction between people CBI No

to estimate how onefeels about a situation.

Semantic Relations: Esoteric Concepts. Demonstrate CMR No

awareness of analogic relationships among IMR

abstruse bits of information.

Mechanical Knowledge. Information aboutindustrial Mk ?

arts — mechanics, electricity, etc..
(Continued)
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TABLE1 (Continued)

 

 

ACCULTURATIONAL Guilford French Well

KNOWLEDGEABILITIES Symbol Symbol  Replicated?

General Information. Knowledge aboutletters, arts and Vi Yes

sciences.

General Information: Science, Humanities, Social Vi

Sciences, Business.

ABILITIES OF REASONING UNDER NOVEL CONDITIONS.

Induction. Discovera principle of relationships among NSR I Yes

elements.

General Reasoning. Find solutions for problems having CMS R Yes

an algebraic quality.

Figural Relations. Demonstrate awareness of CFR ?

relationships amongfigures.

Semantic Relations: Common Concepts. Demonstrate CMR No

awarenessof relationships among common IMR

pieces of information.

Symbolic Classifications. Show which symbol does not CSC No

belongin a class of several symbols.

Concept Formation. Given several examplesof a CFC No

concept, identify new instances.

SPEED OF THINKING ABILITIES.

Perceptual Speed. Under highly speeded conditions, ESU P Yes

distinguish similar visual patterns and find

instances of a particular pattern.

Correct Decision Speed, CDS. Speed of finding correct No

answersto intellectual problems of intermediate

difficulty.

Writing and Printing Speed. As quickly as possible, No

copy printed or cursive letters or words.
 

test designed to measure a narrowability of Span Memory(Ms), for example,

involves broader abilities such as short-term Acquisition and Retrieval

(SAR). This is true because memory for elements (in Ms) can be facilitated or

inhibited by memory for components of which the elements are a part (as

measured in SAR), and becauseother influences, such as those associated

with recency or primacy, operate at both levels.

In sum, then, a test designed to measure at onelevel of breadth always

measures, to someextent, narrower and broaderabilities, and a test designed

to measure one kind of capacity—a cognitive operation, say— always mea-

sures, to some extent, other capacities. Abilities are not different in the same

sense that marbles and apples are different. The distinctions amongabilities

are as shades of gray.
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INFORMATION PROCESSING IN HUMANABILITIES

What has just been said about difficulties in distinguishing different

capacities applies as well to distinguishing betweendifferent intellectual pro-

cesses. It is difficult to separate different features of apprehendingthe infor-

mation of problems, and different features of converting information into

what might constitute solutions to problems. But a description of such fea-

tures, howeverdifficult it may be to define them, has come to be known as a

description of information processing.

Thus, studies of information processing focus on what a person does in

solving a particular kind of problem,usually a problem of apprehension and

short-term retention. A way of demonstrating what a person doesis referred

to as a paradigm. A paradigm is much the same asatest, but often in infor-

mation processing studies a paradigm is not used to measure individualdif-

ferences, whereas the word“test” usually refers to operations for measuring

such differences. A paradigm thus mayindicate only how people onthe aver-

age perform on different aspects of a problem,butthe history of study of hu-

manabilities is rich in conversions of paradigmsinto tests to measure individ-

ual differences. This is certainly true of the most recent period of study of

abilities (as illustrated in this volume).

Toillustrate the concept of information processing paradigms, consider a

well known paradigm developedby S. Sternberg (1975). There are manyver-

sions of this paradigm. In one version, subjects are shownsets of from 3 to 8

different letters and then asked to judge whetheror not a particular letter was

amongtheset of letters to which they had been exposed. Reaction times to

make correct judgements are recorded, and plotted along the ordinaterela-

tive to the numberofletters in the exposure set. A bivariate plot of such data

has the following form:

Reaction

Time 11900 fF

Msec

1000 fT

   (ye ry e ore

800 r

700  
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Number of Letters in Exposure Set
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Anequationfora straightline is fitted to this scatter-plot. The slope forthis
equationis interpreted as indicating a process of scanning immediate mem-
ory to ascertain whetheror not the presentedletter is amongtheletters stored
in that memory. Theinterceptis interpreted as indicating a melange of pro-
cesses such as are required to get oriented toward the stimuli and generate a
response(after one has scannedto determineif an elementis present). For the
results illustrated in the figure, the slope is 70 msec. This indicates that, on the
average over several people, it takes about 70 msec to scan from oneletter to
anotherin order to find whetheror not a previously presented letter (now in
immediate awareness)is in the presented set. This slope remains the sameas
the numberof elementsis increased, as does the time to activate the collection
of processes represented by the intercept (about 560 msec).

Theresults illustrated in the figure thus indicate that, for any person, the

timeto locate a particular element in memoryis a direct function of the num-

ber of elements in a memoryset that contains the element. But individuals

can differ notably in the amountoftimeit takes to scan from one elementto

another (the slope), or in the time required for the processes represented by

the intercept of an equation fitted to their trials on the S. Sternberg para-

digm. Recent work using such paradigmshas been aimedatdescribing such

individual differences and showing howtheyrelate to test measures that have

been around for some time (e.g., Cooper, 1976; Egan, 1979; Chase, 1973;

Horn, 1978; Hunt, 1983; Pellegrino, 1983, and this volume). Such ap-

proaches have been used withtests of several different contents — spatial, se-

mantic, mathematical (Carpenter & Just, 1986; Poltrock & Brown, 1984;

Hayes, 1973; Horn, Donaldson, & Engstrom, 1981; Hunt, Lunneborg, &

Lewis, 1975; Mulholland, Pellegrino, & Glaser, 1980; Pellegrino & Kail,

1982; R. J. Sternberg, 1977) — and with the aim of describing abilities such as

g and Verbal Comprehension. For the mostpart, these studies can be viewed

as efforts to describe relatively broad abilities in terms of narrowerabilities.

The narrowerabilities are then often called “components,” in which case the

approach maybereferred to as componential (R. J. Sternberg, 1977).

Very commonly, the narrow abilities of information processing or

componential studies are measured in terms of reaction times (RT) to makea

decision that can be judged to be correct. Our example of the S. Sternberg

paradigm illustrates this. RT measures should be carefully distinguished

from other measures that can be obtained from a paradigm ortest. A well-

known paradigm of Shepard & Metzler (1971) can be used toillustrate dis-

tinctions between RT measures and other measuresof abilities.

The Shepard-Metzler spatial rotation paradigm requires a subject to judge

whether or not one of two figures is a rotation of the other. Different

amounts of rotation, Rj, are represented inj = 1,2,.. ., n different sets of

figures. A subject’s reaction times (Tj) to make correct judgments (of

whetheror not onefigure is a rotation of the other) are plotted along the axis
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of ordinatesin a bivariate Cartesian system, and the Rj degrees of rotation of

different figures are plotted along the axis of abscissas. A good-fit straight

line of the form T} = mRj + is fitted to the plotted points to represent the

relation between RT and amountof rotation. As in the S. Sternberg para-

digm, the slope ofthis line is interpreted as indicating a cognitive process, in

this case a process of visual scanning,and the interceptis interpreted as indi-

cating a mixture of processes such as those of coordinating musclesin press-

ing a lever (to respond), focusing on the figures, encodingthe figures into im-

mediate awareness,etc.

A test designed to measurethe Spatial Orientation primaryability, S, can

be comprised of the items of the Shepard-Metzler paradigm (French, 1951),

but the scoring of the items is not for reaction time but for accuracy —i.e.,

whetheror not onefigure is correctly judged to be a particular rotation(e.g.,

a flip-flop) of the other. The scoring difference between RT & accuracyis fre-

quently the defining characteristic for distinguishing a study said to represent

cognitive processing and other kinds of studies of abilities: the tasks of two

studies can be very similar, but, in the study said to represent processing, RT

measures are obtained, while, in the other study, the basic measures are for
accuracy.

This is not always the case, however. Whatis called cognitive processing

may involve accuracy measures for simple or very homogeneoustasks or

features of tasks. Often in studies of this kind, the simple tasks are used to
help describe the variance in accuracy scores for complex tasks. Measuresde-
rived from serial recall tasks illustrate this approach to defining cognitive
processes.

In a serial recall task the subject is presented with a series of elements —say,
words —in a particular order and,after a lapse of time (usually very short),
askedto recall the elementsin the order in which they were presented.If sev-
eral sets of elements are presented (or the sameset is presented over several
trials) and the scorer accumulates (over presentations) the elements correctly
recalled andtheirserial positions, typically a curve such asthe followingis in-
dicated. This figure illustrates what are called primacy and recency processes
(Glanzer & Cunitz, 1966; Murdock, 1960). Primacyis indicated by the find-
ing that an elementpresentedearlyin a series is more likely to be recalled than
an element presented in the middle of the series; recency is indicated by the
finding that an element presented nearthe end ofa (fairly long) series is more
likely to be recalled than an elementpresentedeither early or in the middle of
the series.

In one kind of cognitive process study using these measures (Hornetal.,
1981), primacy and recency measuresof individual differences were obtained
as accuracyscores for the elements early-presented and late-presented. These
measures were then used in multiple, part, and partial correlational analyses
to demonstrate the extent to which elementary processes could account for
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the variance in accuracy measures of the kind that have beensaid to indicate

g. In this work recency wassaid to indicate a process of holding elements of

information in immediate awareness, as required in comparing elementsin a

reasoning task; primacy wassaid to indicate nascent comprehension of the

kind that is needed for encoding information. Both of these processes were

found to account for some (by no meansall) of the variance in a broadg-like

measure labeled Gf. Perhaps more important, the processes were implicated

in adulthood age differences in Gf (Hornet al., 1981). These findings will be

discussed in a later section of this chapter.

Thereis considerable evidence to suggest that the componentabilities indi-

cated by reaction time measures are different from the componentabilities

indicated by accuracy scores. Egan (1979), for example, looked carefully at

speed and accuracy processes of thinking, using the Shepard-Metzler task

and a clock-position test developed by Guilford (1967). He found that the

speed of rotation (slope) measurescorrelated near zero with number-correct

(i.e., accuracy) scores on the Shepard-Metzler and Guilford tests. The slope

measures also correlated near zero with measures of pilot-training perform-

ances that were expectedto indicate spatial abilities. These findings are con-

sistent with the overall pattern of findings for many measuresin otherstudies

(Horn, 1978; Hornet al., 1981).

It is difficult to obtain reliable measures of slopes and intercepts for indi-

vidual subjects. It is possible that Egan’s results mainly reflect this problem.

If slope measures do not havesubstantial reliability — above .7 —they cannot

correlate substantially with another variable, and small correlations can not

be seen to be significant in “smallish” samples (e.g., Ns less than 100). Prob-
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lems of obtaining adequatereliabilities for slope and intercept measures have

been important in manystudies of information processing (e.g., Carpenter &

Just, 1978; Horn et al., 1981; Hunt, et al., 1975; R. J. Sternberg, 1977).

Virtually an entire new field of cognitive processing studies has been

opened by advances in microcomputer technology. RT measuresare easily

obtained with this technology, but so are other measures. We have only just

begunto look through the window into humanthinking that has been opened

by measurements derived from microcomputerpresentations. This volume

attests to the promise of quite interesting findings yet to come.

The remainder of this chapter is devoted to sketching an indication of

broad abilities that need to be understood in termsof detailed analyses of the

kind that now can be undertaken in cognitive processing studies.

A HIERARCHY OF HUMANABILITIES

The system I will describe is empirically based. There have been hundreds of
studies of the intercorrelations and linear structures (e.g., common-factor,
simple structure) for human abilities. This work has been collated and sum-
marized (by, for example, Cattell, 1971; Ekstrom et al., 1979; French, 1951;
French, Ekstrom, & Price, 1963; Guilford, 1967; Guilford & Hoepfner,
1971; Hakstian & Cattell, 1974, 1978; Horn, 1968, 1972, 1982a, b, 1985,
1986a, b, c; Horn & Donaldson, 1980; Pawlik, 1966, 1978). The results have
led to an understanding (with provisos, Carroll & Horn, 1981) of different
kinds and different levels of narrowness of humanabilities. I will outline this
understanding in the sections that follow.

In describing levels of narrownessofabilities, it is useful to move from the
general to the specific. It would be reasonable, also, to do it the other way,
and go from the narrowto the broad. Butit seemsthatoften, at least, adults
prefer to think in terms of broad concepts for which there can be particular
instances. Also, broad conceptsofgeneral intelligence (and there are several,
Horn, 1986a) have been in vogue for roughly 80 years, in consequence of
which manypeople readily assumethat it is most useful to think in terms of
such an ability before (if ever) thinking in terms of narrowerabilities.
To make the presentation fairly concrete, I will use the subtests of a

popular test — the WOJ—toillustrate the kinds of componentabilities that
are parts of major abilities. Many of the WOJ subtests represent primary
abilities indicated by replicated research, as summarized by Ekstrom etal.
(1979). This relationship is suggested in Table 2. We shall see that some of the
majorabilities indicated by existing research are not well represented in the
WOJ. In describing those abilities, I will refer to subtests of other popular
tests, such as the K-ABC and McCarthy.
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TABLE2

WOODCOCK-JOHNSONTESTS CLASSIFIED IN TERMS OF

The Primary Ability Best Measured With a Test
 

 

Test CAor Second

No. TOA Subtest Name Symbol Primary Ability Name Order

1 CA Picture Vocabulary V Verbal Comprehension .Ge

8 CA Antonyms-Synonyms EMR Evaluation of Semantic Ge

Relations

22 TOA Humanities Vi General Information Ge
21 TOA Social Studies Vi General Information Gc

20 TOA Science Vi General Information Ge

15 TOA Passage Comprehension MMC Chunking Memory Gc

17 TOA Applied Problems Sep Sensitivity to Problems Gq

6 CA Quantitative Concepts R General Reasoning Gq

16 TOA Calculations N NumberFacility Gq

12 CA Verbal Analogies CMR Cognition of Semantic Gf

Relations

9 CA Analysis-Synthesis CFR Cognition of Figural Gf
Relations

11 CA Concept Formation CFC Concept Formation Gf

4 CA Visual Auditory Learning ACoR Auditory Relations Gf,Ga

13 TOA Letter-Word CMR Semantic Relations vf*

Identification

18 TOA Dictation DASP Discriminate Patterns of Vf,Ga

Sounds

19 TOA Proofing EMU Evaluation of Semantic Vf

Units

14 Word Attack Te Temporal Tracking Vf,Ga

5 CA Blending SPUD Distorted Speech Ga

Comprehension

3 CA Memoryfor Sentences Mm Meaningful Memory SAR

10 CA Numbers Reversed Ms Span Memory SAR

2 CA Spatial Relations Vz Visualization Gv

7 CA Visual Matching P Perceptual Speed Gs
 

Very Broad Abilities

The ability that might be measured by a linear combination ofall the mea-

sures of the WOJ or K-ABC— thoselisted as cognitive or processabilities, as

well as those referred to as measures of achievement —is broader than most

measuresof IQ org. Call this measure G1. A somewhat less broad G2 meas-

ure could be obtained by summingoverthe 12 measuresof cognitive abilities

in the WOJ, or the 10 measures of processes in the K-ABC. These G2 mea-

sures are comparable in breadth to a total-score G2 measure obtained as the

sum of the subtest scores of the cognitive subtests of the McCarthy (1972)

test. Each of these G2 measures has a somewhatdifferent mixture of compo-

nent abilities, but they are comparable in terms of breadth. A G3 measure
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might be a linear combination of the measures (sum of subtest scores) ob-
tained with the tests of achievement in the WOJ or K-ABC.These measures,
too, would be comprised of somewhat different componentabilities, and
both would be narrower than the G2 measures, but they would be compar-
able in terms of breadth.

The G3 measure would be roughly as broad asthe total IQ measureofthe
Wechsler tests (Matarazzo, 1972; Wechsler, 1981), although the primary fac-
tor compositions of the indicated G3 measuresare different from the primary
factor composition of Wechsler IQ measures. The G2 and G3 measures
would in each case be broader than the measure obtained as Stanford-Binet
IQ, although this conclusion must be guarded because the Stanford-Binet
provides a broader measureat youngages than at older ages (see Horn, 1972,
1976, 1977 for review of someofthe relevant evidence).

In a test intended for applied work, it might be wise to provide the user
with a basis for using a broad-to-narrow hierarchy ofability measures. Such
a hierarchy would permit flexibility in use. A broad-to-narrowhierarchical
System permits oneto skirt issues that seem to divide investigators such as
Horn (1985, 1986a), on the one side, and Jensen (1984, 1985) and Eysenck
(1985), on the other, while at the same time retaining the major concepts of
these different investigators. Features of a potentially useful hierarchywill be
illustrated in subsequentsections.

Second-OrderAbilities

Forseveral reasons of theory andpractice,it is useful to step downin a hier-
archy of breadth from very broad measuresreferred to as IQ (orthe like) to
measures that are less broad. This helps indicate lawful relations that are
clouded if only a concept of general intelligence is used (Horn, 1986a); it
helps mitigate confusion generated by the fact that IQ has been so variably
defined.

One of the major problems with theliterature pertaining to IQ is that dif-
ferent measures of whatis said to be the sameattribute involve different col-
lections of basic abilities having different construct validities (Cronbach,
1971; Horn, 1972, 1976, 1986a, b; Horn & Goldsmith, 1981). This condition
leads to unproductive arguments about whetherornot

a

test “really measures
g” (arguments seen in the Harnad, 1985, collection of essays pertaining to a
piece by Jensen). The arguments are unproductive for reasons adumbrated
previously: the melange of abilities an IQ test measuresis an arbitrary func-
tion of the nature and breadth of the subtests used in the total measure. Al-
though Jensen (1984) contends that the broad measure obtained with the
K-ABCtests is not a good measureofIQ,in facthis argument boils down to
an opinion that short-term memory and visualization abilities (called by
other names in Kaufman & Kaufman, 1983) do not best exemplify his ideas
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about what should be measured in an IQ test. (As pointed out by Horn &

Goldsmith, 1981, these ideas change from one to another of Jensen’s writ-

ings). Kaufman and Kaufman,onthe other hand,arguethatthe abilities they

measureare the sine qua non of what should be measuredin an IQ test. What

we presently know about humanabilities does not consistently supportorre-

fute either party in this kind of controversy. Different mixture-measuresare

useful for different purposes.

Whatthe extant evidence doesindicateis that abilities less broad thang in-

dicate important lawful relations that are not well represented in theories of

generalintelligence. The interrelationships among diverse samples ofability

measurements are not explained by g; distinctly different abilities are re-

quired to explain these relationships. More important, these distinctly differ-

ent abilities have different lawful relationships with variables that indicate

the development and function of cognitive capacities. These broad abilities,

and the measuresof the WOJthatfit within a system of these abilities, will be

described next.

Acculturation knowledgeorcrystallized intelligence, Gc. Thetests of

the WOJ capturethe breadth ofthis ability better than any publishedtest of

which I am aware. Thetests that measure Gc are found both amongthe cog-

nitive abilities (CA) and tests of achievement (TOA)of the WOJ. Listed in

order of strength of relationship to Gc, these abilities are:

Verbal knowledge—i.e., Picture Vocabulary and Antonyms-Synonyms,

each measured in CA.

Science Information, measured in TOA.
Social Science Information, measured in TOA.

Humanities Information, measured in TOA.

Reasoning, measured (in CA) with a verbal analogiestest. The correlation

expected between verbal knowledge and verbal analogies is roughly .65.

The correlation will be smaller than this estimate if the words of the

analogies are very common,but the relations among the wordsare quite

abstract. To the extent that this condition obtains, the correlation be-

tween verbal analogies and Gc decreases andthe correlation between

verbal analogies and fluid intelligence (Gf, as will be described shortly)

increases (Horn, 1968, 1972; Horn & Cattell, 1966).

Applied Problems, measured in TOA.Given

a

verbally developed problem

and information of possible relevance for solving the problem, use the

information to achieve a solution.

Passage Comprehension, measured in TOA.Provide an appropriate word

to complete an incomplete statement.

Quantitative Concepts, measured in CA. This test extends to problems of

algebra (e.g., solve equations), trigonometry (determine perimeters,

areas), and the calculus (differentiation, integration). It can be expected

to measure Gf as well as Ge.
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Calculations, measured in TOA. Do addition, subtraction, division and
multiplication calculations, some involving fractions and decimals.

A very broad version of the Gc ability involves knowledge in most areas of
scholarship — the humanities, business, the social sciences, the physicalsci-
ences, and mathematics. This ability may be what most people mean when
they use the term “intelligence” (Humphreys, 1979; Sternberg, Conway,
Ketron, & Bernstein, 1981).

Broad reasoningor fluid intelligence, Gf. The reasoning of Gf involves
many mental operations — identifying relations among events, drawing infer-
ences, forming concepts, recognizing concepts, identifying conjunctions,
recognizing disjunctions, etc. Abilities of the WOJ that indicate the ability,
listed in order oftheir relationship to the ability, are the following:

Analysis-Synthesis, measured in CA.Thetaskis to apply abstract rules of
relationships among black, yellow and blue squares. For example, the
rule might be that two arrows,one pointing from a black Square to a yel-
low square and the other pointing the opposite way, represent the same
thing as a black square alone. The subject must understand the double-
arrow relationship well enough to be able to applyit in other instances in
which colors of the squares vary.

Concept Formation, measured in CA.In this test the subject must figure
out a rule that indicates why one drawing of colored Squaresorcircles is
an instance of a concept.

Visual Auditory Learning, measured in CA. Comprehendanduse a code
that involves transforming English wordsinto symbols.

Reasoning, measured with verbal analogies in CA,(discussed in describing
Gc). This is a good measure of Gf when the wordsofthe analogies are
equally familiar or equally esoteric for all examinees and only therela-
tionships among the wordsintroduce variancein individual differences
in correctly solving the problems.

Quantitative Concepts, measured in CA. Again, to the extent that the
items require reasoning rather than the knowledge of Gc or Gq (to be
discussed shortly), this test will measure, Gf.

Calculations, measured in CA.To the extentthat the items involve reason-
ing but do not emphasize mathematical knowledge,perse, this test will
be mainly indicative of Gf rather than Gc or Ga.

Numbers Reversed Memory, measured in CA. Presented with a series of
several numbers, repeat the series in the reverse of the order presented.

Other well known measures of Gf are Blocks (of the WAIS) and Matrices.
In the WOJ battery, not unlike other batteries, there is considerable over-

lap in the measures of Gf and Gc. Such overlapis difficult to avoid. This is
true partly becauseit is difficult to devise tasks that measure reasoning but
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are not also prominent indicators of acculturation knowledge, and vice

versa. Nevertheless, Gf and Gcare usually distinguishable even in batteries

that are not well designed to show the distinction; the two have distinct rela-

tionships to age in adulthood, and different predictive relationships with a

numberof outcomevariables, both in childhood and adulthood.

Broad speediness, Gs. WOJabilities that are most indicative of Gs were

identified earlier in describing the difference between narrow and broad abil-

‘ties. As indicated in that discussion, speedinessis indicated by the following

measures.

Visual Matching, measured in CA.This test has been studied in manypre-

vious investigations.

Spatial Relations, measured with under highly speeded conditions in CA.

Letter-Word Identification, measured in TOA. Underconstraints to work

rapidly, correctly pronounce common English words.

Almost any test can be madeinto a measureof Gs by decreasing the demands

for knowledge and reasoning, and increasing the demands for working

quickly. Also, most speeded tests involve, to some extent, the Gs ability.

Thus measures such as Quantitative Concepts, Analogies and Dictation

should correlate with Gs because they involve emphasis on speed of perform-

ance.

Short-term acquisition and retrieval, SAR. The phenomenastudied in

most ofthe research on information processing are closely similarto the phe-

nomena measured in SAR. Thus, much of whathas been learned from stud-

ies of information processing pertains mostdirectly to this broad ability. The

tests of the WOJ that mainly indicate SAR include the following:

Numbers Reversed Memory, measured in CA, described briefly in the

discussion of Gf.

Digit Span, measured in the SLS.

Tone Span, measured in the SLS.

Location Span, measured in the SLS.

Word Span.Tothe extent that this task measures individual differencesin

familiarity with words,it will indicate Gc rather than SAR.If the words

are equally familiar to all respondents (or equally obscure), the task will

mainly indicate SAR.

Memory ForSentences, measured in CA. Repeat a sentence immediately

after it has been spoken.

Blending. Given spokensyllables, such as “win” and “dough”put them to-

gether to make a word— “window.”

Visual-Auditory Learning, measured in CA. Learn to associate familiar

spoken words with unfamiliar visual symbols so that sentences in the

symbols can be translated into words. Thetest is thus a symbol-word
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paired associate memory measure. Performance on this task can be in-
dicative of Gv (to be discussed shortly), rather than SAR —if there is em-
phasis on visualization and not much demandfor retention of unrelated
material.

SARshould not be confused with Long-term Storage and Retrieval, TSR,
one of three broadabilities indicated by several lines of research but not in
the WOJ. Theother two abilities are Visual Intelligence, Gv, and Auditory
Intelligence, Ga. Because the WOJ does not provide for good measurement
of these abilities, it is less comprehensive thanit might be. This meansthat
the WOJ has a different composition than somewhat similar tests that do
measure TSR, Gv and/or Ga. For example, the K-ABC, compared with the
WOJ, is heavily weighted with measures of Gv.
Long-term storage and retrieval, TSR. This ability is often confused

with SAR.It is true that the manner in which informationis organized at the
time of encoding for memorystorage (i.e., SAR)is indicative of the manner
in which the informationis retrieved at a later date (i.e., TSR)—even if much
time intervenes between acquisition andretrieval (Norman, 1979). Butit is
clear, also, that individual differences in immediate apprehension andre-
trieval over short periods of time, measured in SAR,are independentof(al-
though correlated with) individual differences in the facility with which in-
formation can beretrieved from quasi-permanentstorage, as measured in
TSR.It can be difficult to distinguish TSR from SAR,if the memorytasks
for TSR do nottax the ability to retrieve information stored at least several
minutes before, and preferably several hours or days before.

Tests such as the following are indicative of TSR.

Retention of Learning After Several Minutes or Hours. Tasks of short-
term memory can be used to measurethis ability if recall is measured
long after the short-term memorytesting has been completed. The meas-
ure best indicates TSR rather than SARif the subject is not led to expect
that recall will be asked for after a long lapse of time.

Expressional Fluency,a facility for coming up with appropriate anddiffer-
ent expressions for an idea.

Ideational Fluency, a facility for finding different ways to interpret and
write or talk about a particular event —e.g., a woman boarding a bus.

Associational Fluency, retrieving wordsthat are connotatively similar toa
given word. This should be measured with fairly liberal time limits, in
order to give subjects a chanceto exhaust the elements in a category of
association.

Memory Acquisition. Thetaskis to memorize, verbatim, a page of words.
It can be difficult to distinguish TSR from Gcif the TSR tasks do not
emphasize fluent recall of knowledge, in contrast to breadth of knowl-
edgeas such.If the task mainly requires that onerecite passages learned
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several minutes previously, then performanceswill be mainly indicative

of TSR. The tasks should not be highly speeded. It is not known whether

or not time to reach a particular criterion in verbatim learning of verbal

material is a good measureofthis ability. My guess is that such a meas-

ure is more indicative of Gc or SAR than of TSR.If so, Memory Reten-

tion and Relearning will not be a good measure of TSR,butinstead will

best measure Gc. This hypothesis is based on verylittle evidence.

Broad visual intelligence, Gv. Gv might be referred to as visual flu-
ency. It represents an ease of visualizing how things appear from different

perspectives, and how they change as they movein space.It is not analytic,

however, in the sense that Gf is analytic: one doesn’t so much analyse how

objects will look as they move in space, as merely “see” this intuitively

(Poltrock & Brown, 1984). This is illustrated in the following examples of

measures of Gv.

Visual Manipulation, as measured in Paper Folding,a test that has been

studied in many previous investigations. The task is to perform mental

operationsthat simulate the folding of a piece of paper, punching a hole

through the folded paper, unfolding the paper, and identifying how the

holes would appear.

Visual Constancy. This can be measured with an accuracy score based

on the Shepard and Metzler test. In most studies of Gv and its compo-

nents, correctness of responseis the measure, andthis is obtained under

only moderately speeded conditions. Studies of the visualabilities of pi-

lot and navigatortrainees in the U.S. Air Force (Guilford & Lacy, 1947)

indicate that Gv is not so muchthespeed ofvisualizing asit is the ease or

fluency of visualization.

Analytic Perception, as measured in the Gottschaldt or Hidden Figures

test. In addition to being used as a measure of visualization, this test

has been regarded as an indicator of Field Independence (Witkin &

Goodenough, 1981). Field Independence was measuredinitially with

Rod-and-Frameand Tilting-Room tests. These measuresindicate incli-

nation to use cues from one’s own body,rather than environmentalcues

surroundingan object, as a basis for locating the object in space. Witken

and his coworkers have presented evidence suggesting that Field Inde-

pendenceis associated with being male, not female. Work by Bock and

Kolakowski (1973) suggests that individual differences in Gv stem from

a sex-linked major-gene influence.

Gestalt Closure. This test has been used in manypreviousstudies. The

ability is one of closing gaps to complete a view that is obscure, as when

objects must be seen througha fog.

Design Memory. Although intended to measure short-term memory,

this test is likely to be a goodindicator of Gv if the task for the subjectis



INFORMATION PROCESSING STUDIES OF HUMAN ABILITIES 221

one of visualizing the steps in drawing a figure or if performanceis facil-
itated byability to visualize howlines are put togetherto create a figure.

It can be difficult to distinguish Gv from Gfif visualization tasks can be
solved by analytic reasoning,or if there are few requirementsfor fluent vis-
ual thinking.

Broad auditory intelligence, Ga. This ability represents a facility in
“chunking” streams of sounds, keeping these chunks in awareness, and
anticipating an auditory form that can develop out of such streams.It is not
heavily dependent on auditory acuity, which is a quite separate capacity
(Horn & Stankov, 1982).

For centuries, there has been recognition that auditory genius is not
necessarily aligned with other forms ofintelligent behavior, but a clear
operational distinction between Ga andother broadintellectual abilities was
not made until recently (Horn, 1973; Horn & Stankov, 1982; Stankov, 1978;
Stankov & Horn, 1980). In the studies wherethis distinction was drawn,first-
order abilities were identified within a catholic sampling of auditory tasks;
factoring these primaryabilities, along with first-order indicators of Gc, Gf,
and Gv,then isolated Ga and a separate auditory acuity dimension. The tasks
that indicate Ga involve detection, transformation, and retention of tonal
patterns.

The following are some ofthesetasks.

Discrimination among Sound Patterns (DASP). In Tonal Classifications,
one of the markertests of DASP,thetask is to identify which one of five
chords does not belong with the others. Other markers require one to
identify changes in patterns of notes. Dewar, Cuddy, and Mewhart
(1977) interpreted an ability similar to DASPas “sensitivity to relational
cues in sounds.”

Maintaining and Judging Rhythms (MaJR). The tasks that best indicate
MaJR require one to join in a beat, as provided by a metronome, and
correctly continue the beat after the beat-setter (metronome) has
stopped. An incomplete wordstest similar to Blending in the WOJ also
indicatesthe ability. In this task, one must identify a spoken word when
particular sounds havebeenleft out in the pronunciation. The sugges-
tion is that the ability is important in understanding the rhythms of
language.

Temporal Tracking of Sounds (Tc). The ability of Tc is one of holding
soundpatterns of past and present in mind while anticipating patterns of
the future. Hearnshaw (1956) and Pollack (1969) havereferred to this as
“temporal integration.” In a prominenttask of the ability one must re-
tain nonsensesyllables in awareness for several seconds, while a new
pronunciation of nonsensesyllablesis going on, andidentify just where
in the newly pronouncedset the first-pronouncedsyllables are located.
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Auditory Cognition of Relations (ACoR). This ability is analogousto vis-

ual Gestalt Closure. In the Chord Decomposition task that helps define

the ability one must identify separate notes that were heard in achord. A

factor indicating this ability had been identified in early work (French,

1951; Shuter, 1968).

Auditory Immediate Memory (Msa). This is only a weak indicator of Ga.

Msarepresents a finding that span memoryfor soundsis different from

span memory for visual patterns, including visually-presented words

and paralogs. It seems that Msa enables oneto hold soundpatterns in

mind while performing cognitive manipulationsof the kind expressed in

the other abilities of Ga. This function of Msa in Gais similar to the

function of span memory in Gf (Horn, 1970; Horn & Cattell, 1966).

It can be seen in these examplesthatthe abilities of Ga require,in different

ways, holistic comprehension of patterns among sounds. Asin the case of

Gv, Gais best indicated when the tasks do not emphasizethe reasoning of Gf

or the comprehension of Gc,but, instead, require that one fluently perceive

the flow of sounds.

Little has been done to show how Gais important for understanding devel-

opment and achievement. Thebits of evidence now in hand suggest that it is

indeed important, not only for understanding achievements in music, but

also for understanding language development and academic achievementin

the early years of schooling (Anastasi, 1976; Atkin, Bray, Davidson,

Hertzberger, Humphreys, & Selzer, 1977a, b; Minton & Schneider, 1980). A

measure of Ga probably should be includedin test batteries designed for use

in research.

Summaryofoutline of major abilities. At a general level, then, impor-

tant “intelligences” of humanscan be described as follows:

Gc: A broad pattern of the achievements and knowledge that are empha-

sized in acculturation.

Gf: A broad pattern of reasoning,seriating, sorting, and classifying.

TSR: A facility in retrieving information stored in what might be called

long-term memory.

SAR:A broad pattern of immediate awareness, alertness and retrieval of

material apprehended a short time before.

Gv: A facility for visualizing figures and responding appropriately to spa-

tial forms.

Ga: A pattern of skills of listening and responding appropriately to audi-

tory information.

In Figure 1, I have outlined a structural model and an information proces-

sing hierarchy for theseabilities. The intelligences are represented bycircles;

some of the directed arrows extended outward from these circles point to
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squares representing the manifest variable indicators of the intelligences. The

squares correspond to primary factors (tests) one would use in structural

model analyses to enable the intelligences to be distinguished. (The two di-

mensionsin dottedcircles at the bottom of the figure and CDS have not been

discussed previously in this chapter: vSD and aSD represent elementary

capacities for attaining awareness of stimuli—visual (vSd) and auditory

(aSD) —as discussed insightfully by Broadbent, 1966. CDSrepresents Cor-

rect Decision Speed. These abilities will be discussed in considering ability

differences associated with age. The arrows running from bottom to top

along theright in the figure representthe idea that information first enters the

psychological system as elementary awarenesses, which then are linkedin as-

sociations, which then form perceptual gestalts, which then can be under-

stood in terms of relations and correlates. Eduction of relations and corre-

lates has been regardedas the sine qua nonofintelligence (as in Spearman’s

near-classic theory).

In bringing these intelligence factors to your attention my purpose is not so

much to argue for particular interpretations as to suggest that information

processing theories need to take account of such broad abilities. The factors

represent consistent findings from a numberofstudies. They are hardy in the

sense that they can be found(in well designed studies) under notably differ-

ent conditions of sampling of subjects and markervariables. They havedif-

ferent construct validities (Cronbach, 1987)—i.e., their correlations with

manyvariables are consistently different. The factors obtained in samples of

youngchildren are similar to factors obtained in samples of adults. Such evi-

dence adds up to suggestthat different intellectual processes exist at a broad

level in human thinking. This should be kept in mind when information pro-

cessing studies are done on onekindoftask or a few tests. A law indicated for

one intelligence need not be applicable to otherintelligences.

Toillustrate a few of the ways in which these broad abilities are different

empirically and in termsof construct validity, I will turn to consideration of

evidence pertaining to adult development. In this work the aim has been to

describe broad abilities in terms of components that not only indicate indi-

vidual differences but also indicate individual differences associated with age

differences across what I like to refer to as the “vital years of adulthood”

(Horn, 1982a)—i.e., the period from age 20 to age 60 years.

SOME DEVELOPMENTALFINDINGS

The results of Figure 2 illustrate how mixture models ofintelligence, cou-

pled with an assumption that the same g is measured in different mixtures,

can create confusion. From young adulthoodto old age,there is (on the aver-

age across many individuals) monotonic decrease in someintellectual abili-

ties, and monotonicincrease in otherabilities. Each of these kinds ofabilities

is a part offirst principal component measuresof g and other (IQ) mixture-
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FIGURE 2 Adulthood age differences in dimensions of humanintellect.

measures of “general intelligence.” If a mixture-measure happens to be
loaded with the abilities that decline with age, then investigators using that
measure will find that “intelligence” declines with age in adulthood;if most
of a mixture-measure is made up from abilities for which thereis aging in-
crease, those who use that measurewill find that “intelligence” increases with
age in adulthood;if the two kindsofabilities are about equally weighted ina
mixture, then the pronouncementcan bethat “intelligence” reaches a plateau
of developmentin adulthood.
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Several variations on these themes have been playedin the publishedlitera-

ture, with resulting controversy andeffort to explain the “contradictory”re-

sults. For example, many pagesin the literature of adult development have

been devoted to explanations for a belief that cross-sectional studies show

aging decreasein intelligence while longitudinal results do not. This charac-

terization of results is wrong on several counts (Horn & Donaldson, 1980),

but one important count is that the apparent contradictionis created,at least

in part, by the use of different mixture-measures; the mixture-measures of

longitudinal studies have been heavily loaded with Gc and TSR, but the

mixture-measures of cross-sectional studies have been most loaded with Gf

and SAR.Theuse of mixture-measures can create many subtle confusions.

Theresults of Figures 3 through 6 indicate independence amongratherele-

mentary abilities which, however, have some claim to being regarded as

amongtheintellectual abilities of intelligence.

Therationale for the analyses of the studies of Figures 3 through6 is sug-

gested by considering Figure 3. In this figure a primafacie case is indicated

for a claim that the aging declineofintelligence is due to aging loss of simple

capacities, such as a capacity for making visual discriminations (vSD), a ca-
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pacity for speed in making correct decisions (CDS), or a capacity of short-
term memory (SAR).

Consider the visual discrimination factor, vSD. Measured using proce-
dures developed by Broadbent(1966), this indicates the breadthof a person’s
immediate awareness of stimuli. It is reasonable to suppose that if such
awareness were lacking, there would be consequentdistortion of perception
in problemsof the kind one must solve in order to score well on measures of
“intelligence” — in particular, measures of Gf. Thus,if loss of visual discrimi-
nation capacities occurred with aging, then this might be the underlying cause
for any correspondingloss seen in Gf. The curve for decline ofvSD, as shown
in Figure 3, establishes this prima facie case. Since the decline ofvSD is about
the sameasthe decline for Gf, it appears that the decline of the latter could
result from the decline of the former.

Missing in such reasoning, however, is a demonstration that the decline of
vSD accounts for the decline of Gf. When this missing link is introduced
by removing vSD decline from Gf decline, the resultsillustrated in Figure 4
are obtained. Theseresults provide no support for an hypothesis that loss of
sensory function is responsible for loss of the intellectual capacities repre-
sented by Gf. Eliminating the part of Gf decline that is estimated by decline
of vSD doesnot bring abouta significant change in the curve of decline for
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FIGURE 5 Aging decline of Gf after control of

SAR = short-term acquisition and retrieval

EOG = encoding organization

Gf: the change from 3.75 to 3.33 units of decline per decadeis not significant.

This same kind of result was obtained with a measure of auditory sensory

discrimination. |
Shown in Figure 5 are results suggesting that when there is control for

short-term memory (SAR), and/or nuclearabilities of SAR (e.g., organizing

information in encoding, EOG, as measured using a paradigm developed by

George Mandler, 1968), the decline curve for Gf is significantly reduced

(from 3.19 to 1.66, for SAR,or 1.87, for EOG,units of decline per decade).

Such results support an hypothesis that individual and aging differences in

Gf involve, in part, the immediate memory of SAR and encoding organiza-

tion of EOG.

The results for EOG and SARare not independent: control for EOG or

SARproducesroughly the same reduction in the decline curve for Gf (vary-

ing a bit from onestudy to another, as seen in Horn et al., 1981), but adding

one of these controls to the other does not significantly increase the effect.

The suggestion is that EOGis the essential element of SAR associated with

the aging decline of Gf. This is not to say, however, that EOG accountsforall

the variance in SARorall the aging decline of SAR. EOG accounts for only

the part of SAR in Gf that declines with age, and only about one-half the

aging decline of SAR,as such.
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Several findingsareillustrated by the results summarizedin Figure6.First,

the results indicate the extent to which the decline of Gf can be described in

terms of aging changesin speed of performance.

An interesting finding of our studies is that speed in obtaining correct an-

swers to problemsof nontrivial difficulty (CDS) has verylittle relation to the

level of difficulty with which one copes in measures of Gf. The results de-

picted in Figure6 tell this story in terms of development; removalof decline

of Gf that can be predicted by decline of CDS hasverylittle influence on the

decline curve for Gf (the changeis from 3.75 to 3.64 units of decline per dec-
ade, whichis not significant).

In contrast to control for CDS, control for a simple factor of inspection

speediness, Gs, does account for someofthe aging decline of Gf. The change

from 3.75 to 2.15 units of decline per decadeis significant.

But speediness per se may notbe the culprit responsible for the loss of Gf

that is associated with Gs. As shownin the top part of Figure 6, most of the
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aging decline of Gsitself is accounted for by control of capacities for main-

taining close concentration (COS) and dividing attention (ATD). When COS

and ATDare controlled in Gf, there is control also for the decline of Gs and

the associated decline of Gf. Moreover, the part of Gf decline that is associa-

ted with Gs is accounted for by decline of capacities represented by COS and

ATD.
The summaryof Figure6 also illustrates results suggesting that the decline

of Gf does not result because older adults are more careful andpersistent

than younger adults. To the contrary.

Wefind that older adults work longer than younger adults before aban-

doning a difficult problem—the PRS(persistence) variable of the figure.

Also, older adults give fewer incorrect answers to problems of nontrivial

difficulty —the CAR (carefulness) variable of the figure. CAR and PRSare

reflected in slowness of performancein timedtests, particularly if the re-

spondentis given no opportunity to “abandon”a problem for which no solu-

tion is found(i.e., give no answer). But when carefulness and persistence are

used to estimate the decline of Gf, and this estimated part is removed,the de-

cline of Gf not reduced;it is increased, as can be seenin theresults ofthefig-

ure. Such findings indicate that carefulness and persistence are qualities that

enable older adults to perform better on untimed Gf tasks than they would

perform if these qualities were not allowed to operate. When advantagesas-

sociated with carefulness and persistence are removedbystatistical control,

there is significant increase in the aging decline of Gf.

Table 3 contains a summaryofresults from analyses in which severaldif-

ferent sets of variables were controlled in studying the aging decline of Gf.

One important conclusion derived from these analysesis that different sets of

three or four control variables produce essentially the same result —i.e., ac-

count for the same amountof aging loss of Gf. This suggests that many os-

tensibly different variables measure the samebasicintellectual processes. For

example, although Gs,inspection speediness, is operationally independent in

measurement from COS, concentration on slowness, and SAR,all of these

TABLE3

PROCESSES OF GF THAT ALSO RELATETO AGING
Based on Horn, Donaldson, and Engstrom (1981)
 

COS: Concentration: Maintaining close attention, as in very slow tracing.

EOG: Encoding Organization: Classifying incoming information in ways that facilitate

subsequentrecall.

ICM: Incidental Memory: Remembering small things that would seem to be insignificant.

EIR: Eschewing Irrelevancies: Not attending to what has provedto be irrelevant.

ATD: Dividing Attention: Attending to other things while remembering a given thing.

MSB: Working Memory: Holding several distinct ideas in mind at once.

HYP: Hypothesizing: Forming ideas about whatislikely.

Gs: Inspection Speediness: Speed in “finding” and “comparing.”
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variables involve a common process —e.g., attentiveness — thatis implicated
in Gf decline: they do notcarryentirely independentvariance in accounting
for the aging loss of Gf. The samecan besaid for several combinations of the
variables shownin the table. And there are several waysto talk about the
three or four basic processes that are implicated in aging lossesofintellectual
abilities. These matters are discussed in other papers (Horn, 1982a, 1985;
Hornet al., 1981).

Ourresults indicate that no combination ofthe variables of Table 3 will ac-
countforall the observed decline of Gf. The precise proportion of the decline
that is accounted for by different variables varies with the reliabilities of the
measures andthe extentofthe variability in the subject sample, but, roughly,
only about one-half of the aging loss of Gf can be reliably accounted for with
variables of the kind that are illustrated in the table.

SUMMARYOF MAJOR POINTS

The review of this chapterillustrates a componential approach to analyzing
individual differences in any important (broad) ability. Results from this
componential analysis show that Gf, for example, is madeupofdistinct pro-
cesses, Or Capacities, that are associated with aging differences and changes.
Gfis merely one of several different intelligences that can be analysedinthis
way.It is operationally distinct from Gc, which has a different course of de-
velopmentoverthe vital years of adulthood. Gc, too, is comprised ofdiffer-
ent processes, different elementary components. Both Gf and Gc are
developmentally different from Gv,visual intelligence, Ga, auditory intelli-
gence, SAR,short period apprehension and retrieval, TSR, long-term stor-
age and retrieval, and perhaps two formsof speed of thinking. A componen-
tial information processing account can be given for each of these intelli-
gences. Each account would be different.
The domain ofintellectual abilities can be described at anyof several dif-

ferent levels of abstraction. In considering whichlevel is “best,” objectives
should be carefully considered. In some work,rather narrow concepts and
measures should be used.In other work broad concepts, such astheintelli-
gencesofthis essay,will be of most value. For the next few years, particularly
in developmental psychology, probablyit will be most worthwhile to work
with broad concepts. Asthe overall picture begins to be seen clearly, it will
become mostuseful to explore the details of particular cognitive processes.

Figure 7 represents another view of the model that wasoutlined previously
in Figure 1. Two hierarchies are now Suggested; one on the right, one on the
left: a processing hierarchy (referred to earlier) and a developmentalhier-
archy. The latter represents the idea that the abilities derive from different
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TABLE 4
ABBREVIATIONS USEDIN FIGURES 1 AND 7
 

 

Abbreviation: Meaning

I Inductive Reasoning
CFR Cognition of Figural Relations
R Quantitative Reasoning

Gf Fluid Eduction

Vv Verbal Comprehension
EMS Evaluation of Semantic Systems
CMR Cognition of Semantic Relations

Ge Acculturated Knowledge

Cs Speed of Closure

Cf Flexibility of Closure

S Spatial Orientation

P Perceptual Speed

Gv Broad Visual Comprehension
Gs Broad Speediness
CDS Correct Decision Speediness

DAS Discrimination Among SoundPatterns
MJR Maintaining and Judging Rhythms
Tc TemporalTracking

Ga Broad Auditory Comprehension

Ma Associational Immediate Memory
Ms Span Immediate Memory
Mm Meaning Paired Associates Immediate Memory

SAR Short-term Apprehension and Retrieval

Fi Ideational Fluency
Fa Associational Fluency
Fe Expressional Fluency
SM Semantic Memory over Minutes

SMT Sperling Matrix Awareness
VLA Visual Location Address

vSD Visual Sensory Detection

SPD Speech Perception under Distraction
Ac Auditory Acuity
Va Auditory Valence Recall

aSD Auditory Sensory Detection
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environmental and genetical determinants and have different implications

for refined predictions of outcomes. The organizations of the lower part of

the figure emerge early in development, before emergence of the organiza-

tions of the upperpart of the figure. Componential analyses of information

processing should be directed at helping us to understand these matters.

It seems that Gf and Gc derive from separate sets of genes, the influences

of which are manifested early in development (Horn, 1985; 1986). Piaget

may haveidentified such early manifestations in his descriptions of assimila-

tion and accommodation. From anearly age, it seems, some individuals are

best structured to readily bring information into their cognitive systems,

whereasother individuals are best structured to mull and reorganize informa-

tion that(less readily) enters their systems. Such predilections shape individ-

ual development from infancy onward, producedifferences in the waysindi-

viduals process information and thus bring aboutthe distinction wesee, only

crudely, in Ge and Gf.

Massesof environmental influences augmentgenetic factors to help shape

abilities. Individual differences in these influences help bring aboutthe sepa-

rate distributions of different abilities. The independence of Gf, Gc, Gv, Ga,

SAR, TSR, Gs, and CDSreflects the independence of environmental influ-

ences, as well as the independence of genetic determiners.

Genetical and environmental determiners work together. A genetically de-

termined readiness to bring information into cognitive structures makes one

“ready”, as it were, for the acculturational formation of Gc. A readiness to

mull the information that gets into one’s cognitive system facilitates extended

developmentof Gf.

Otherfactors are importantin this development. Different nutritional and

physical injury factors, for example, will affect different basic predisposi-

tions in different ways and to different extents. Existing evidence indicates,

for example, that neurologicalinjuries in childhood have a more enduringef-

fect on Ge than do similar injuries in adulthood. Neurological injuries in

childhood may produce greater effects on Gf than on Ge,as in adulthood,

but the implications are different. These matters are complex. Muchinterest-

ing work remainsto be done.

Thus, each ofthe broadabilities indicated in Figure 7 has different genetic

underpinnings and a different course of development over the life span.

SAR,for example, stems from genetic factors that are different from those

that affect TSR. The different genetical determiners chart different courses

of optimal and typical development for SAR and TSR. This is true for the

other abilities of the figure.

The influences suggested in Figure 7 are multidirectional. Justas the influ-

ences of the lower part of the figure produce the effects represented high in

the figure, so abilities of the upper section determine the abilities of the lower

part of the figure; broad abilities influence narrow abilities, and vice versa.
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There is muchto learn. Howbest to go about this? A suggestion of this
chapter is that researchers break bondsthat bind work to conceptsof general
intelligence and recognize thedistinct distributions of different intelligences.
Studies of information processing should be organized in accordance with
the evidence that indicates broad, importantabilities that are independentin
fundamental ways. Architectonic construction of new information should be
organized aroundsuch concepts. Valuable technology, as well as scientific
understanding can derive from theory constructedin this way.
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CHAPTER 7

Cognitive Processing,
Cognitive Ability,
and Development:
A Reconsideration

Daniel P. Keating and Darla J. MacLean
University of Maryland Baltimore County

To an overwhelmingextent, adults outperform children on a wide variety of
the cognitive tests and tasks in which they have been observed. Similarly, but
less strongly, older children and adolescents outperform younger children.In
addition, within-age comparisons of children’s or adults’ intellectual per-
formance reveal substantial intercorrelations: Individuals tend to perform
generally near the top, middle, or bottom of the appropriate age-comparison
group.

Researchers have long soughtbasic explanationsfor these pervasive devel-
opmental and individual differences in intellectual performance. For both
the general age-gradient of task performance, and the within-age “positive
manifold”of task intercorrelations, psychologists have assumed,or perhaps
merely hoped, that one or a few basic mechanisms mightsuffice.
Over the courseof this century,it has proved a difficult task. In this paper,

wewill briefly review someofthese earlier attempts, in order to Suggest why a
“componential” approach, using parametersofbasic cognitive processing as
component elements, has been viewed as a possible way out of the impasse.
Second, wewill review several of the current attemptsto link basic cognitive
processing with developmental and individual differences in cognitive abil-
ity. Note that we are using “ability” as a shorthand term, and do not thereby
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meanto imply an particular theoretical stance. What we meanbyability in

this paper is the reliably measured performance— whatever its origin—on

tests or tasks requiring complex cognitive activity for their solution. Such

performance,or ability, comprises the descriptive reality we seek to explore

further.

This review of the set of contemporary approaches broadly labeled “cogni-

tive processing accounts” reveals somesubstantial interpretive and methodo-

logical difficulties with the assumptions of those models. At the conclusion

of the empirical review, we summarize the majorthreats to validity of such

cognitive componential attempts. In the third andfinal section, we conclude

by suggesting possible routes for future research, both moretraditional ap-

proaches, which entail either further rigorization of the model-testing proce-

dures, or the addition of different level “components,” or both; as well, we

consider briefly a developmental andhistorical agenda which we have termed

“reconstruction” in cognitive development (Keating & MacLean,in press).

Overlaps between these two approachesare thenalso briefly examined.

Conceptual Background

The range of performance on tasks requiring complex cognitive activity 1s

undoubtedly great. Even restricting our consideration to the range of the

population within which significant organic impairmentis neither suspected

norlikely, there exists overwhelming evidenceof vast developmental and in-

dividual differences. The regularity of normative age trends on many cogni-

tive ability tasks is well documented, from tasks as simple as digit span recall,

to the complexities of logical and scientific reasoning (Keating, 1980). When

individual differences are taken into account, the range is even more impress-

ive. Even on extremely challenging tests designed for older adolescents or

adults, such as the Scholastic Aptitude Test (SAT) or the Advanced Progres-

sive Matrices (APM), substantial numbersof youngerchildren (11 to 13 years

old) outperform 95% to 98% of much older individuals —5 or more years

older in chronological age (Keating, 1976).

Both these phenomena—the regularity and range of developmental(that

is, age) differences, and the range andintraindividual consistency of individ-

ual differences — have been recognized virtually since the inception of stand-

ardized testing for cognitive ability. Indeed, theories designed to accountfor

these observed patterns have comprised a generically defined “psychometric

agenda.” Webriefly review the history and outcome of that agenda, in order

to understandbetter the logic leading to a componential approach.

Psychometric Attempts to Explain Cognitive Ability. It would be in-

correct to argue that there is a single clear agenda within the research tradi-

tion of psychometrics. We focus here on those aspects of that tradition which

involve theoretical statements about the nature andstructure of human men-
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tal abilities. It is assumed that humansare capable of dealing with complex
information, understandingrelationships, solvingintellectual problems, and
so on, because of an underlying structure of mental ability or abilities. Un-
covering and explaining this structure has been a common goal of diverse
psychometric theories of ability.
Though not a history of these attempts, this discussion is aided by a dis-

tinction drawn from the history of mentaltesting: the different traditions as-
sociated with Galton and with Binet (Cairns, 1983). Galton’s claims regard-
ing a single, overriding intellective function, differentially distributed across
individuals and resting squarely on a potentially identifiable physiological
base, are the foundation of the theoretical arguments within psychometric
theory. Contrasted with this, Binet generally eschewed foundational claims
aboutintelligence and cognition (questions of developmentalorigin orteleol-
ogy were explicitly not a part of his agenda), and focused instead on the use
of information regarding the performanceofchildren on standardized tasks
as the basis for targeted intervention to change such performanceskills.
Thus the Galton/Binet contrast historically constitutes a continuing de-

bate: Do “intelligence” measurestell us something fundamental about the
competence/capacity of the individual, something which “explains”differ-
ences in performance,or dothey instead give a “reading” of currentlevels of
developmental acquisition with respect to performance, but justify no
internal-subjective attributions? From the former position, theoretical and
empirical clarification as to the nature andstructure of the underlying intel-
lect is a fundamental goal; from thelatter position, the practical improve-
ment of performanceis the validity criterion.

Historically, much of the confusion within psychometrics can betraced to
Terman’s conflating of these two perspectives. Galtonian in theoretical ori-
entation, Terman adopted Binet’s method of standardized assessment with
the conviction that it gave rather direct access to the presumed underlying
distribution andstructure of ability. With a handy but largely unanalyzed
tool (“IQ”), a movement of enormoussocial importance was launched: mass
testing of “intelligence,” a movement which dominated the educational re-
search agendafor overa half-century (Farnham-Diggory & Nelson, 1984).
Not until the late 1970s was there a sustained attempt to explain the

obtained IQ (or IQ-like) variance in less ambiguousandless arbitrary cogni-
tive psychological analyses (Keating, 1984). The Galtonian goal returned
with an impressive array of new methods, and efforts to understand and ex-
plain ability variance, primarily through theoretical moves of a reductionist
tendency— either to physiology or to cognitive elements — have advancedthe
theoretical issues considerably. A complete history of these theoretical devel-
opmentsis an important task, but beyond the scope of this chapter, and un-
necessary for our argument. Instead, the reasonsfor turning to cognitive pro-
cessing components as explanatoryfactors will be highlighted.
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The starting point for any discussion of psychometric theory must be

“What do we do with g (generalintelligence)?” This means different things to

different theorists, but the fundamental issue is whether or not there is some

single entity or aspect of mind whichis at the core of humanintellectual func-

tioning. As noted above, this was Galton’s claim, andit has remained influ-

ential. A succinct current statement of the Galtonian notion can be foundin

Eysenck (1984):

Intelligence A. . . is the underlying physiological structure of the nervoussys-

tem that enables individuals to behaveintelligently and that causes individual

differences in intelligence. Intelligence B is the application of this innate ability

in everydaylife. Intelligence C is the attempt to measure, by meansofIQtests,

intellectual functioning. (p. 290)

This is a clear set of claims endorsed in moreorless similar terms by theorists

from Spearman (1904) to Jensen (1979). This purest, physiological g is at the

beginning of the causal chain; althoughit gets entangled along the way with

educational, cultural, personality, and other factors,it is assumed to be the

essence of humanintelligence. What are the empirical supports for such a

claim?

Note at the outset that supporting this claim empirically is an admittedly

difficult task. Because we can observe only “Intelligence C”—that is, per-

formance on somecollection of tasks —the inference to an underlying struc-

ture must make clear and testable assertions about the rules for inference.

Unfortunately, this has not generally been the case. When suchtests have

been done, for example for Spearman’s one-common-factor theory, the sup-

port for the claims has been weak (Horn, 1984).

At the more global level of argument(e.g., Jensen, 1984), there are three

sets of correlational evidence used to support the notion ofg: (a) the ubiquity

and magnitudeofthefirst principal componentfor virtually any collection of

cognitive tasks; (b) the differential loadings of types of tasks on this first

principal component; and (c) the relationship of complex performance to

more elemental features which might be “purer” measures of physiologicalg,

especially reaction time (Jensen, 1984) or evoked potential (Eysenck, 1982,

1984).

Horn (1984) has marshalled many of the key arguments against the use of

the first principal componentto infer g. Most centralis the problem of arbi-

trariness: “Different collections of tests. . . measure different principal com-

ponents. A principal componentis not a stable indicator of any particular

commonfactor. It represents arbitrary collections” (Horn, 1984,p. 7). The

problem of arbitrariness can be extended to include the collections of test-

takers as well as tests. In the absenceof a clearly stated theory with specific

claims, such correlational patterns can not speak to the generic notion ofg.
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Whensuchspecific claims have been tested, they have been found wanting.

Horn (1984) summarizes:

In spite of the prevalence of belief in general intelligence, in spite of the emo-

tional intensity with whichthis belief is held, and despite the fact that this belief

is proclaimed as true by someofthe highpriests of our science, the belief should

be cast out. (p. 12)

Aswe will see, Horn hopes to makea better case for a multi-factor theory of
intelligence. We defer consideration of that theoretical issue to consider the
next claim for g, the interpretation of differential factor loadings.

Evenif it can notsustain the claim for g, the ubiquity of the first principal
component seems to constitute an intuitive or “face validity” claim for some-
thing like general intelligence. On every occasion when we construct some
new test of what we believe to tap “intelligence,” it inevitably loads signifi-
cantly on the first principal component— or, morecolloquially, it correlates
with IQ. Further, there also seemsto be a pattern across studies such that the
more one seeks to construct content-free and thus “culture-fair” measures,
such as Raven’s Progressive Matrices, the higher the loading of suchtests on
the g factor. Thus, diminished cultural loading seems to accurately reflect
higher “Intelligence A” loading. Should we not regard the convergent find-
ings of a highly replicable positive manifold, together with differential load-
ings for less acculturated tasks, as establishing the claim for somesort of gen-
eral intelligence?

Not necessarily, and for two straightforward reasons, both of whichintro-
duce the problem of ambiguity of interpretation. First, this evidence does not
establish a boundary around anintellective domain. Again, Horn (1984):
“Manynonintellectual performancesare includedin this manifold. . . . Pos-
itive correlations do not indicate the boundaries for a domain of humanintel-
lect” (p. 10). That is, interpreting the manifold asintellective requires that
anything falling into the manifold must also be interpreted as part of g, un-
less we advance sometheory to distinguish between those variables which
“belong” and those which do not. Such

a

distinction might yielda theory, but
it would need to be validated in some other way. Facevalidity is not enough.

Second,thebelief that the pattern of differential loadings reveals “purer g”
is of course an interpretation. We and others have proposedanalternative
(Keating & MacLean, in press; Keating, 1984: Olson, 1984): Rather than
“culture-free” or “culture-fair,” tests such as Raven’s matrices tap highly
formal and specific school skills related to text processing and decontext-
ualized rule application, and are thus the most systematically acculturated
tasks typically employedforintellectual assessment. Some cross-cultural evi-
dence would support such a claim (e.g., Sharp, Cole, & Lave, 1979; Luria,
1979). Note that this turns g as physiology on its head (or perhapshelpsto get
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its feet on the ground): the first factor is now interpretable as the degree ofac-

culturation to the mainstream schoolskills of Western society.

Perhapsthis is the wrong interpretation. (We suspect not.) But note the

central problem: Each view is an interpretation based on pre-scientific,

unstated assumptions. Choosing betweenthe interpretations is impossible on

the basis of additional analyses of task performance alone:It is undecidable

at this level, within these (psychometric) methods.It is clear, then, that the

notion of g cannot be supported with existing psychometric evidence, and

that neither the ubiquity nor the loading patterns of first principal compo-

nents provide support for such a claim.

Eysenck (1982, 1984) contends that psychometric methods havenotyet ad-

equately addressed thereal scientific question, the assessmentof Intelligence

A. Because practical intelligence testing built on the work of Binet, the theo-

retical questions raised by Galton have been inappropriately muddied.

Pursuing a directly reductionist argument, he proposes the use of indices

moreclosely tied to this Intelligence A, or physiological g. One candidateis

reaction time (which Jensen, 1984, views as being composedsubstantially of

differential rates of “neural oscillation”), though there are performance con-

founds in this as well. Eysenck’s better candidate is evoked potential—the

cranial-surface electrical changes in response to a simple stimulus — which,

when measuredin certain ways, correlates quite highly with IQ (.82 in one

notable example). Assuming that this could be rigorously replicated (and

there maybe significant technical problems in doing so), would webe safe in

inferring the capture of ourreticent factor, g?

Even granting evoked potential’s centrality within the positive manifold,

we are still unable to use it to define the meaning of the manifold. As a

correlational pattern, it is still open to a variety of interpretations, and

deciding among them must moveto anotherlevel of analysis. But isn’t this

doing just that? Isn’t this a physiological measure, and thus capable of

defining the meaning of the manifold?

It serves such a role in definition only if we already assumethe existence of

the very conceptual element wehaveset out to locate empirically. Recall that

the criterion of its importance is again IQ (or some other performance-based

index of the positive manifold). This variance can serveas criterial only if we

already assumeit to be a reasonable (if muddy) indexof“intelligence”to be-

gin with. Otherwise, disruptive alternative interpretations intrude.

Let us take note of two. First, evoked potential can be viewed as an index

of physiological g only if it is a stable characteristic of the person, and not

merestate variability. Note further that simpletest-retest reliability is insuffi-

cient to remove this concern: The context of assessment mayelicit differen-

tial states in different individuals. (This is not a facetious suggestion. For per-

sons accustomedto succeeding easily in challenging test-like situations, such

a “brain” assessment situation mayelicit different cognitive activity than for
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those who havenot had such success.) Second, even if this problem could be

dealt with, there is no way of knowing — other than through neo-natal assess-

ment, and perhapsnotthen, given intrauterine environmental variability —

whether such differencesreflect “innate” differences in “accuracy of neural

transmission” (Eysenck, 1984), or the effect of developmentally acquired dif-

ferences. A// the evidence thus advanced to date for “explaining”intellectual

performance differences by correlation with physiological indices (evoked

potential and others) is similarly compromised bythis interpretive ambigu-

ity. Of course, the strength, replicability, and generalizability of even these

findings is far from well-established.

Along with Horn (1984),we wonder whythestrength of belief in g as the

psychological explanation of individual differences in intellectual perform-

ance managesto persist despite such failures. He suggests that “emotionally-

basedbeliefs can have a curious staying power”(p. 8). The emotionalbasisit-

self deserves inquiry; perhapsit is bound up in the power/knowledge nexus

(Foucault, 1984) of our social practices. Locating “failure” within the person

is less socially destabilizing than seekingit in the social practices themselves.

Such blinders are evident as well in the use of g (IQ) correlations with real

world criteria as “validity” evidence: This belief must presume that the “real

world”is not similarly biased, when comparedwith tests (Keating, 1984).

As noted above, Horn’s (1984) critique of g (general intelligence) models

was advanced in part to create theoretical space for a more sophisticated

multi-ability theory. His elaboration ofthe fluid vs. crystallized intelligence

notion (Horn, 1980, 1982, 1984) has the advantagesof specificity and intui-

tive appeal. Further, Horn claims that manyof the key features of the model

are empirically testable, and that such attempts haveyielded results compati-

ble with the Gf/Gc distinction (as well as other specific features of the
model).

Thougha theoretically advanced developmentrelative to g models, Horn’s

interpretation of psychometric evidenceis itself subject to the very critiques

he has used againstthe earlier formulations. Most central again are the prob-

lemsof arbitrariness and ambiguity (Sternberg, 1977).

In addition to the ways noted abovein which factor analytic evidenceis
arbitrary, the move to multiple-ability models introduces another: How
many factors do we need or want? Here, the Guilford-Horn exchangeis in-
structive (Guilford, 1980; Horn & Cattell, 1982). The “subjective character”
of this debateis self-evident; it can not be decided on the evidence,sincedif-
ferent prior assumptions dictate the outcome. Horn views Guilford’s
120-factor structure-of-intellect as “forcing” unnecessary distinctions;
Guilford views Horn’s analysis as ignoring necessary distinctions. The pref-
erenceis in principle arbitrary.

The Gf/Gcinterpretation is ambiguousin precisely the same wayas noted
earlier. In contrast with some colloquial uses of the terms, “fluid” is not
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meant as free-floating resources; rather, it represents incidental or casual

learning as opposed to systematic acculturation (as in education). But an-

other interpretationis possible, that the Gf tasks tap skills which are the most

systematically acculturated. The face validity acceptance of Gf tasks asinci-

dental learning merely moves the claim to another ground; to address this

question would require an extensive understandingofthe socialization prac-

tices which impinge on cognitive development (Keating & MacLean, in

press). Otherwise, the distinction andits interpretation rest on a superficial

assumption that we already know well enough whatthe importantfeatures of

cognitive acculturation are, an assumption difficult to maintain in the face of

careful analyses (e.g., Bronfenbrenner & Crouter, 1983; Cole & Means,

1981).

Horn (1980) readily admits how ill-defined the distinction is, but argues

that there is a “latent” structure which it approximates:

The Gc dimensionis only a rough,fallible indicator of a complex latent attrib-

ute of intelligence. The Gf dimensionis noless fallible as an indicator of the la-

tent attribute referred to as fluid intelligence. (p. 295)

It is noteworthy that the “latent” nature of the dimensions implies a new at-

tempt to go beyondarbitrariness and ambiguity, by using causal modeling

(Horn, 1984). The well-known goal of causal modeling is to supplement or

replace a posteriori interpretations of covariance analyses with the testing of

covariance patterns against an a priori specified model. But clearly this

merely moves the problem onestep further back: What generates the a priori

models? If they are merely restatements of previously observed empiricalre-

lationships, then the location of the “latent” attributes is in the network of

empirical associations, and the demonstrationis tautological. And unless the

models are complete, thereis the risk of ignoring important causal contribu-

tions. Horn’s (1984) analyses, for example, give prior status to psychological

elements and their genetic grounding. In the absence offully specified mod-

els, including all possible socialization influences and interactions with

unintended organismic variance, rapid but unfoundedinferencesproliferate;

for example (Horn, 1984):

It is well-established that girls learn language earlier and morereadily than do

boys. An essential determinant of the differences between boys andgirls is

genetic—the Y chromosome.(p. 28)

Thus, a highly likely connection between a physical basis and the psychologi-

cal developmentis implied. Though used by Horn to contradict a different

assumption (that Gf is genetic, and Gc isn’t), the example is doubly revealing.

First, consider the claim “earlier and more readily”: Whatis the added mean-
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ing of the emphasized phrase? “Morereadily”is inferred becauseit is earlier.
The intent, though,is clear: The earlier learning is presumptively caused by
an internal intellective characteristic, a “readiness.” Second, the statement
reveals its own implicit causal model, that the Y-chromosomeeffectis (at
least partly) direct. But we also know that XX-chromosomepersons (i.e.,
mothers) are the primary caretakers of children whose language acquisition
has been studied, and that manyaspects(social, emotional, cognitive, behav-
ioral) of the relationship between mothers and children varies with the child’s
gender(e.g., Chodorow, 1978). Withoutall of this informationis the causal
model, we may miss the fact that the Y-chromosomeeffectis only indirect,
that is, through different maternalrelationships with daughters versus sons.

Causal models can thus be as easily misleading as informative. For pur-
poses of “explaining”intelligence, such modeling could only be meaningful
after the inclusion ofall socialization and developmental factors. That
agenda, however, presumes an understanding of social practices which we
have not even undertaken (Bronfenbrenner & Crouter, 1983). To the extent
that the constraints of causal modeling force such attention to ontogentic his-
tory and social/culture practices, this would be a welcomeandprogressive
development. To the extent thatit is used to reflexively validate already held
assumptions aboutthe nature of humanintelligence, it merely contributes to
the long-standing problemsof arbitrariness and ambiguity of “objectively
determined factor analyses” (Horn, 1980, p. 295).

Largely because of these problems, psychometric theorists have recog-
nized that the validity of any modelof ability can not be decided within spe-
cifically psychometric methods. In an important multivariate modeling anal-
ysis, Baltes, Nesselroade, and Cornelius (1978) showed that obtained data
structures of psychometric performance variance, including developmental
patterns, could be generated with simple assumptions,using either purely en-
vironmental models, purely genetic models, or mixed models of severalsorts.
What does this imply for conclusions about underlying “causes” derived
solely from the performance data matrix? Clearly, it suggests that the infer-
ences are unwarranted. These multivariate data matrices of performance are
no less robust becauseofthis; rather, they have a different theoretical status.
“It is not only desirable, therefore, but operationally possible to consider
multivariate constructs such as [psychometric] factors as dependent varia-
bles” (Baltes et al., 1978). In these terms, “validity” has a different meaning
from its traditional and colloquial one: It is not the credibility of the infer-
ences aboutability, but instead whetherthe data structures are robust enough
to be used as reasonable dependentvariables. Understanding howinter- and
intraindividual differences in performance come to exist thus lies beyond
psychometric theory, and requires a different approach.

Seeking to validate ability theories using underlying cognitive processes
as the elements of explanation represents one such attempt. The logic of
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such analyses, reviewed in more detail below, is that appropriately de-

tailed estimates of online cognitive processing could overcomethe limitations

of a purely psychometric approach. Ideally, such estimates would be

unambiguous, at least relative to composite test scores, which have often

been viewed as representing the products rather than the processesofintellec-

tual activity. Obtaining unambiguousestimates, or parameters, of ongoing

cognitive activity is, of course, problematic, but the availability of well-

analyzed experimental tasks from the information-processing literature has

been seen as a possible route around this impasse (Keating & Bobbitt, 1978;

Keating, 1984). In addition, the relationship of the processing accounts to the

target abilities would be nonarbitrary. That is, rather than relying on post

hoc interpretations of empirically derived factors, componential analysis

permits (we would contendthat it requires) somelevel of a priori theorizing

about how the proposed processesin fact relate systematically to the complex

cognitive skill, or ability.

Note carefully these two issues for later discussion. Componential analy-

ses, relative to psychometric factor analyses, demonstrate potential theoreti-

cal superiority by virtue of being less ambiguousandless arbitrary. Whene1-

ther or both of these criteria are not met, then the value of using processing

accounts to explain ability variance—that is, for the purpose of construct

validation —is compromisedor lost. These concerns are focal for our review

of contemporary approaches to componentialvalidation of ability models.

Developmental versus individual differences. Before proceeding to
that empirical review, there is one additional conceptual distinction of con-

siderable importance. The use of processing accounts to explain performance

on complex cognitive tasks has not been restricted to psychometric orability

theorists. Indeed, researchers interested in intraindividual change(thatis, de-

velopment) in cognitive activity have showna similar interest in basing their

explanations upon changesin cognitive processing.

Piaget (1954; Inhelder & Piaget, 1958), for example, used extensively the

notion of logical “operations” as explanations of changes in the performance

of quite complex cognitive tasks. These operations were viewedastheele-

mental components—albeit constructed elements—of cognitive activity.

Piaget’s processing account of cognitive development encounters its ownset

of validity problems,particularly on the questionsof isolating logical opera-

tions as central, and of across-domain consistency of the hypothesized cogni-

tive structures (Keating, 1980). The “core” performance theory mayin fact be

a less significant contribution of Piagetian theory (Keating, 1984, 1986) com-

pared to other features. In any case, performance on Piagetian tasks has be-

comethe target of more basic processing accounts, in a fashion similar to

that of performance on psychometric tests (Keating, 1980).

The relationship between developmental and individual differences has oc-
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casionally been a source of conceptual confusion in the cognitive processing
literature, and someclarification is useful at this point. Two questions pro-
vide a useful focusforthis clarification. First, what is the goal of identifying
developmental differences in speed of processing? Second,is it necessary to
consider developmental changes when examining individual differences in
cognitive processing?

In general, both the purpose and the methodology for examining develop-
mental differences in cognitive processing have been quite similar to the
componential approach for examining individual differences. As individuals
develop, their cognitive processing may undergo fundamentalshiftsin speed,
efficiency, or capacity. If this is the case, then such changes might account
for some of the commonly observed age-gradient in performance on complex
tasks. Case (1978), for example, has arguedthat discrete shifts in the capacity
of working memory (M-space) are responsiblefor a significant proportion of
the developmental changes in performance on Piagetian and other complex
tasks.

Beyond similarity of goals, the study of developmental changesin cogni-
tive processing also shares similarity of methodology with individual differ-
ences research strategies (Keating, 1979). Although the investigation of
intraindividual change ultimately requires observations across time (as in
longitudinal, cross-sequential, or short-term microgenetic designs), virtually
all “developmental”cognitive processing research is in reality cross-sectional.
Such designs are in fact correlations of age with performance, and hence
share the same experimental logic, and are subject to the same validity con-
cerns, as more explicitly interindividual research strategies.

It is helpful to bear these similarities in mind when considering more gener-
ally the validity of claims aboutthe role of cognitive processingin intellectual
performance. Manyof the issues which are somewhat confusing in the con-
text of an individual differences research strategy becomeclearerin the age-
correlation approach,and vice versa. As but one example, to which we return
in greater detail below, considerthe role of knowledge, both procedural and
content, in performance on presumably “processing” tasks. Roth (1983)
studied experts and novices in chess; some of each group were adults, and
some children. His goal was to separate— by meansof subject selection — the
role of knowledge from that of age. He notes that we often confound these
effects, because ageis, in effect, a surrogate for numerousothervariables be-
sides “development” —for example, specific procedural or content knowl-
edge. Inferring fundamental developmental differences on the basis of age
effects, even when they are consistent, does not therefore avoid this con-
founding. this is a frequently mentioned (although often ignored) critique,
which applies sui generis to studies of individual differences in general. Until
we have controlled in some convincing wayfor background,experience, and
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socialization differences amongthe research participants, inferences about

fundamentaldifferences in the nature or quality of basic cognitive processing

are potentially confounded.

Cole and Means(1981) provide a useful compendiumofthe inferential pit-

falls possible in studies which compare how people think. As weshall see be-

low,it is often difficult to specify in advance which particular sources of con-

founding need to be guarded against. Knowledge differences between groups

and individuals may crop up in their overall approach to the task, their un-

derstanding of the instructions, their experience with related cognitive activi-

ties, and so on. Thus, the validity concerns summarized later are pertinent

both to componential approaches seeking to explain individual differences,

and to developmental studies of cognitive processing.

Oneexception to this would be investigations of whether there are develop-

mental differences in speed or efficiency of isolated cognitive processes, re-

gardless of whether or not those processes are meaningfully related to differ-

ences in the performance of complex cognitive tasks. From the perspective of

this question, the contradictory conclusions of Wickens (1974) and Chi

(1977) on whetherthere are overall developmental(that is, age) differences in

speed of processing represent a fundamental question: Do such differences

exist in some absolute sense? It is somewhat difficult, however, to under-

stand the import of this question standing alone. It seemslikely in fact, that,

across the years of childhood and adolescence, there exist many seemingly

“absolute” differences on manyvariables. But if those differences(in, say,

speed of finger-tapping) are unrelated to performance on more meaningful

tasks, their theoretical value is, at best, unclear. We suspect that there is

something of the aptly named “jingle” fallacy at work here: If a parameteris

derived from a task given a cognitive processing “name,”then it must some-

how be important to cognitive activity. At a minimum,it is incumbent upon

researchers to specify the connections between their experimental parameters

and some meaningful domain ofreal cognitive activity (Morrison, Lord, &

Keating, 1984).

Of course, establishing absolute developmental differences in an isolated

cognitive process is problematic. Chi’s (1977) point, in response to Wicken’s

(1974)review,is pertinent. Knowledge differences are almostcertainly highly

correlated with age differences on many cognitive experimental tasks.

Children are, in general, novices at many things. Careful partialling out of

this knowledgefactoris central to the logic of inferring fundamental devel-

opmental differences in processing. Whether such partialling out can be ac-

complished in practice remains to be seen. The currentliterature is replete

with examples (e.g., MacLean & Keating, 1986) of rather straightforward

knowledge manipulations having a major impact on the eliminationoratten-

uation of generally accepted claims about developmental differences in cog-

nitive processing.
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This brings usrather directly to the second question above.If the study of
developmental differences in processing is so difficult, because of the con-
founding of knowledge and experience with age, why considerit at all in
componential approaches? Precisely because when we examine individual
differences without reference to the developmentalhistories of the partici-
pants, weare likely to capture the same confoundingfactors, but simply be
unawareof it. One might well makethe case,in fact, that the study of devel-
opmentis an overarching validity requirement for theories of humanintelli-
gence. Thelikelihood of overlooking or dismissing significant cognitive so-
cialization factors when not employing a developmental perspective is
distressingly high (Keating & MacLean,in press).

Cognitive Ability and Development:

Processing Accounts

With this conceptual background as our basis, we can now considerseveral
of the current attemptsto explain cognitive ability in terms of underlying cog-
nitive processes. The research programswere selected for review as repre-
senting the diversity of approaches, a diversity which has increased rapidly in
the past decade. Aswell, each of the research programs reviewed has encoun-
tered significant and similar construct validity difficulties. By reviewing a
representative range of empirical attempts, we may draw somegeneralinfer-
ences aboutvalidity guidelines. Note also that we do not exhaustively review
the empirical studies within the selected approaches. Instead, we focus on
what weview asthe keyissues in each approach, and drawonits empirical
evidence as neededto clarify thoseissues.
As wenotedearlier, a key goal of this chapteris to elucidate systematically

the threats to construct validation of componential approaches. In response
to these difficulties, one might seek to make the empirical investigations even
more rigorous. Alternatively, one might seek to reframe the Original ques-
tion, which might well lead to different methods of investigation (Keating &
MacLean,in press). Although preferring the latter, we do see considerable
value in the former course as well. In either case, Systematic evaluation of
construct validity concerns will be, we hope, a useful contribution.
General Accounts: To g or not to g?_ As was historically the case with

psychometric ability theories, the simplest and most straightforward version
of a cognitive processing explanation for ability differences is to focus ona
mechanism to explain generalintelligence (g). In this model, some(as yet un-
known) cognitive processing function, probably neurally based, varies
systematically among individuals. This function is believed to affect per-
formance on a wide range of cognitive tasks —indeed, in virtually any
cognitively demandingsituation. Two implications follow from this most ba-
sic model. First, it is argued that this processing variance both accounts for
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and validates the general factor, g, in intellectual performance. If such vari-

ance exists in the neural substrate for cognitive processing, thenit is to be ex-

pected that activities requiring processing, such as tests or tasks, will also

show a pattern of intraindividual consistency in performance. Second, be-

causeit is fundamental to performance,it should be possibleto isolate its op-

eration in a variety of experimental contexts. That is, convergent identifica-

tion of parameters tapping this processing should befeasible.

This perspective has been the basis of a numberof recent empirical studies

(Carlson, Jensen, & Widaman, 1983; Jensen & Munro, 1979; Vernon, 1983;

Vernon & Jensen, 1984; Vernon, Nador, & Kantor, 1985). Although the de-

tails across such studies vary somewhat, the componentiallogic is quite con-

sistent. On the basis of performance on carefully timed experimental tasks,

parametersare derived which are presumedtoreflect rather directly the un-

derlying variance in general cognitive processing efficiency. These parame-

ters are then correlated in some fashion with measures of general cognitive

ability (such as Raven’s matrices). In most cases, these researchers have re-

ported moderate to substantial intercorrelation of the parameters of general

processing speedor efficiency, and the measuresof general cognitive ability.

Substantial factor loadings of the experimental parameters on ability-

defined general factors are interpreted as support both for the existence of a

general factorofintelligence, and forits explanation as a functionof individ-

ual differences in cognitive processing efficiency. In this section, we examine

two such studies (Carlson et al., 1983; Vernon, 1983) in closer detail, in order

to raise some questions about the validity of these general conclusions.

Carlsonet al. (1983) studied 105 seventh-grade children on two experimen-

tal tasks of cognitive processing, and three psychometric tasks. Thefirst ex-

perimental task is the frequently used paradigm developed by Hick (1952) to

assess the rate of gain of information. Specifically, subjects are required to

respond as quickly as possible when a light comeson,by pushinga button be-

neath the light. The number of possible lights which can come on is then

varied in such a wayasto increase the “bits” of information which must be

processed in order to respond. A standard experimental findingis that re-

sponse timeincreases in a regular fashionrelated to the increasein bits ofin-

formation. Thus,the slope of the increase of reaction acrossbits can be inter-

preted as a measure of processing efficiency: More efficient processing

should result in shallower slopes. Carlson et al. (1983), as have others, also

separated response time from movementtime. The subject has his or herfin-

ger resting on a home button before any lights come on. The elapsed time

from onset of the stimulus(i.e., the light coming on ) until the lifting of the

finger is measured as reaction time (RT); the time from lifting until pushing

the appropriate button is movement time (MT). This separation permits a

finer-grained analysis of the online processing of bits of information. The

second experimental task was designed to measureattention, by having sub-
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jects generate random numbersat 1-secondintervals (to the beat of a metro-

nome). The measure of attention (or vigilance) was the degree of departure

from actual random generation. The ability tasks were Raven’s Standard

Progressive Matrices, a reading comprehensionscale, and standardized aca-

demic achievment data (CTBS) from schoolrecords.

Onthe basis of the componential logic, the two key parameters of proces-

sing would seem to be the slope of RT from the Hick’s (1952) task, and the at-

tention variable from the random number generation (RNG) task. (What

processes the RNGtaskis in fact tapping is a point to which we return below).

In Table 1 from Carlson et al. (1983, p. 336), the correlations of RT slope

with the three psychometric measures (Raven’s, reading, and CTBS)are .09,

.03, and — .00; the correlations of attention with these measures are — .02,

.14, and .07. None of these correlationsis significantly different from zero.

One the face of it, this would appear to be rather striking evidence of

disconfirmation of the processing basis of general ability. Indeed, the au-

thors note that the absence of a correlation between RT slope andabilityis

“problematic (p. 341).”

Carlsonet al. (1983) proceed, however, by defining latent variables among

the processing and amongthe psychometric variables in order to further ex-

plore the relationships. They define a common RT factor which includes

both Total RT and the intra-individual variability of RT (SD RT), along with

RT slope. They construct a similar common MTfactor. The three psycho-

metric indices define a g factor, and the attention task together with the read-

ing comprehension performancedefines an attention factor. They then ex-

amine several different structural models of the relationships among these

latent variables. As well, they include in them therelationships of these mod-

els to unique factors, such as reading. On thebasis of the relationships among

the variables specified in the most preferred model, Carlson et al. (1983,

pp. 339-340) draw several conclusions. First, g and attention are essentially

uncorrelated, although attention is a key factor in the RT relationshipto g.

Second, the RT and MTlatent variables are substantially correlated. Third,

the MTlatent variable is essentially unrelated to g or to attention. Finally, the

strong RT relationship to the unique reading factor, and with attention, sug-

gests an important speediness component: “It is this speediness component,

in addition to quality of processing (or general intelligence), that correlates

significantly with RT” (Carlsonet al., p. 341). The final picture, based on the

more sophisticated structural modeling, is the reemergenceof a speed of pro-

cessing componentassignificantly related to ability, although this relation-

ship is to some extent moderated by an attention factor. The attention factor

maybeeither neurally based, or voluntary; on the basis of these findings,

Carlsonet al. (1983, p. 343) suggest that it is not possible to judge.
In reviewing the evidence from the Carlsonet al. (1983) study, we suspect

that this is a case in which structural modeling has obscured as muchas it may
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have revealed. The key problems seem to bein the specification of the origi-

nal commonfactors for the structural modeling, and in the consequent ab-

sence of anyinterpretation of the more straightforward zero-ordercorrela-

tions. Let us considereachissue.

In order to initiate the structural modeling, Carlson et al. (1983) specify

commonfactors for RT and MT,as described above. This seems to run coun-

ter to the original componential logic. The advantage of the experimental

paradigm is not that we can get dependent variables defined in milliseconds

rather than numbercorrect on a test. Rather, it is that the parameters are de-

rived from the experimental procedures in such a wayasto be theoretically

interpretable. In this case, the RT slope is the obvious choice. As already

noted, it is uncorrelated with any ability measure, and is further uncorrelated

with any other experimental parameter except SD RT. Proceeding to com-

bine it with other RT measures mayin somesense “define”a latent variable of

overall RT, but it obscures the particular logic of the experimental paradigm.

The fact that general measures of reaction time correlate with general mea-

sures of ability does not advance our understanding much,if at all. It is pre-

cisely the opportunity to derive parameters which represent specific, ana-

lyzed cognitive processes that is the major advance of a componential

approach. Embedding such analyzed parameters within a general factor

comprised equally (or more than equally) of unanalyzed reaction time de-

feats the logic of the approach.

In so doing, a more interesting story apparent from the zero-ordercorrela-

tions is mostly overlooked. Carlson et al. (1983, p. 343) arguethat thereislit-

tle in their data to permit the distinction between neurophysiological inter-

pretationsof the “attention” factor, versus an interpretation which would see

the attention factor as representing voluntary, sustained effort. Returning to

the original correlations, however, it seems clear that the latter interpretation

is more plausible on the basis of these findings. Recall that the key variables,

RT slope andattention, were entirely uncorrelated with the ability measures.

It would seem quite difficult for a general processing theory to accountfor

this lack of correlation, especially for RT slope, whichis theoretically the

clearest parameter of processing efficiency. The ability measures, however,

are somewhatcorrelated with other parameters derived from the Hick (1952)

task. The intra-individual variability of both RT (SD RT) and MT (SD MT)

are each significantly correlated with all of the ability measures (Raven’s,

reading, and CTBS). That is, six out of six correlations of intraindividual

variability are significantly correlated with ability (ranging from .19 to .40).

One might arguethatthis is consistent evidence, though unexpectedly, ofa

processing basis for general ability. Before accepting this, however, we might

question whatis the interpretation of the SD RT and SD MTparameters. The

processing explanation might invokeregularity of neural oscillation (Jensen,

1984) or accuracy of neural transmission (Eysenck, 1982). But such proces-
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sing explanations must also accountfor the failure of RT slope to correlate at

all.

Analternative interpretation, suggested but not explored by Carlsonetal.

(1983) in these data, seems able to deal with the entire data set. The SD RT

and SD MT measurestap into consistency of performance. This consistency,

however,is more easily interpreted as the result of how muchvoluntary,sus-

tained effort the subjects are willing to put into the tasks. Subjects who try

hard throughoutthetasks, to get the very best times, will have low variability

and fast response times; subjects who try hard sometimes, but not always,

will be more variable and, on the average, slower. Particularly for movement

time, this pattern seems easily interpretable as voluntary, sustained effort.

This pattern of high, sustained, voluntary effort on experimenter-defined

tasks is obviously likely to be of value in the performance of school-related

tasks as well; but the connection need notbe at the level of cognitive proces-

sing efficiency.

In this new interpretation, then, we would expect substantial intercor-

relations of variability measures with total response times (both within and

between RT and MT);consistent correlations between variability, as the best

experimental index of effort, and school-related performance (that is, the

ability measures); and no necessarycorrelation of slope RT with anything,

because that most accurately assesses actual processing differences, about

which the “effort” interpretation remains silent. This is, in fact, the precise

pattern shownin the Carlsonetal. (1983) data. The “effort” parameters from

the experimentaltask are substantially intercorrelated: All are significant at

the p < .01 level, and average about .45. The ability/variability intercor-

relations are noted above:All are significant at the p < .05 level, and average

about .25. Finally, except for the possibly artifactual correlations (of RT

slope with the same data set, that is, Total RT and SD RT), RTslopeis

uncorrelated with anything else, averaging about .03. The single problematic

finding for this new interpretationis the failure of the explicit attention meas-

ure, RNG,to correlate with the ability measures. As an index of attention,

whetherofthe voluntary, sustained type, or of a more basic processing type,

it should correlate with ability performance. This task, however, does not

clearly tap only, or primarily, aspects of attention. Subjects must also re-

member what numbers they have generated, and understandclearly the no-

tion of “randomness.” This seemsa tall order for seventh-graders. Carlsonet

al. (1983) provide no additional analyses of performance onthis task, butit

seems quite possible that it tapped memory factors, and knowledge of num-

bers and of the notion of randomness, as much or more as it tapped
“attention.”

Because many of the sameissues arise in a study reported by Vernon
(1983), it will be analyzed more succinctly. Subjects in this study were 100
college students. They participated in a series of five experiments, from
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which a numberof cognitive processing parameters were derived. In addi-

tion, they also were administered the Raven’s, and the full-scale Wechsler

Adult Intelligence Scale (WAIS). The principal analyses were multiple re-

gressions, with the IQ measuresascriteria and the processing parameters as

predictors. The consistent finding is that the multiple R prediction of IQ is

substantial across different combinations of processing variables: .46 for

mean RTsandintraindividual variability of RT (SD RT); .43 for mean RTs

alone; .43 for SD RTs alone; and .37 when using only derived parameters,

such as slopes or RT differences (Vernon, 1983, p. 65). The principal conclu-

sions are based on these and similar findings from other analyses. First, “the

speed with which personscan perform different cognitive processesis signifi-

cantly and quite highly related to their intelligence” (p. 68). Second,“it is not

only the speed with which a person can perform mentaloperationsthatis re-

lated to higher performance ontests of mental ability, but also the consist-

ency with which he can perform at the same level over a period of time. . . .

Speed and consistency of response were highly correlated and appeared to be

joint aspects of an individual’s information-processing capability” (p.

68-69). Finally, Vernon (1983) notes that the majority of the relationship be-

tween IQ andreaction time is accounted for by the psychometric g factor,

rather than by speediness or otherspecific factors, and hence g varianceis at-

tributable to variance in the efficiency of the execution of a few specific basic

cognitive processes. Further, it is proposed that the apparent role of knowl-

edge andstrategic differencesis not that they explain IQ, but rather that they

are the result of differences in these basic processes operating over time:

“Over a period of time —the years of formal education, for example — faster

cognitive processing may allow more information to be acquired” (Vernon,

1983, p. 69).

Several concerns overlap with those in the Carlson et al. (1983) study de-

scribed above. First, the fact that consistency of processing was just as pre-

dictive as speed of processing can be interpreted differently than Vernon

(1983) suggests. Vernon apparently regards this consistencyas part of the in-

dividual’s information-processing “capability.” But that is, of course, an as-

sumption. Inconsistency of performance might arise because of processing

limitations, but it might just as easily reflect voluntary, sustained effort, as

described earlier. In that case, the equivalence of the relationships of these

two “parameters” with ability becomes moredifficult to interpret clearly.

In any case, neither of these multiple regressions—of mean RT or SD

RT —is consistent with the logic of the experimental tasks. Both sets repre-

sent confounded,and thusdifficult to interpret, parameters. Indeed, Vernon

(1983) acknowledgesthis explicitly: “Mean reaction times per se do not pro-

vide as good a measure of specific cognitive processes as do the differences

between reaction times on someof the tests and the slopes of reaction times

on the others ” (p. 65). The multiple regression to predict IQ from theset of
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seven derived parameters, as noted,is also quite substantial (.37). Zero-order
correlations between the derived parameters and IQ are unfortunately notre-
ported, and thus more detailed analysis of the findingsis difficult.

There are someinterpretive problems, however,with the set of derived pa-
rameters as predictors of g. First, the multiple regression model can of course
make no distinction among well-designed and poorly-designed parameters.
(In this case, we mean parameters whichare relatively unambiguouslyinter-
pretable versus those which are potentially confounded). Several of the tasks
are complicated variants of the nameidentity-physical identity task devel-
oped by Posner (Posner & Mitchell, 1967). In these analyses, Vernon (1983)
uses the straightforward difference between RT’s in different conditions
(physical identity versus synonym/antonym judgments of word pairs). Even
for simple letter match judgments, the “RT difference” parameter is quite
difficult to interpret clearly (Bisanz, Danner, & Resnick, 1979;List, Keating,
& Merriman, 1985). When the material is as complex as synonym/antonym
judgments,it is not at all apparent that the RT difference parameter (com-
paring the rapidity of such judgments to those for physical identity) is di-
rectly interpretable as a “processing” parameter. This parameter may easily
tap into strategic and knowledge differences amongthe subjects. The mixing
of such potentially confounded parameterswith relatively clearer parameters
in a single multiple regression does not allow more fine-grained understand-
ing of the processing basis of ability performance. Another issue is whether
any combination of processing parameters which predict IQ is as good as any
other. That is, if the ability/processing connection rests on a fundamental
psychologicalreality (that is, g as speed of processing), would wenotalso ex-
pect to find a replicable pattern of relationships among parameters andabil-
ity measures? Thus,it is not only the size of the relationship, butalso the pat-
tern of the relationship which servesto establish construct validity. We return
to this issue briefly below. Finally, the intercorrelation of the parameters
themselves does not seem to supporteasily the notion of fundamentalvari-
ance in speed of processing: The processing parameters do not converge.
Excluding the artifactual cases in which the same variable participates in the
derivation of two different parameters, the average intercorrelation of the
derived processing parametersis about .10. Included inthis figure is the slope
of intraindividualvariability across bits of information; that is, the degree to
which the subject becomes morevariable in performanceas the amountofin-
formation to be processed increases. As argued above,thisis open to multi-
ple interpretations. Subjects who maintain a highlevel ofconsistent perform-
ance on the hard items might do so because of superior processing equipment
or because of a willingness to continue to exert effort. Thus, even the ex-
tremely modest convergence of parameters includes several ambiguous
measures.

To summarize, the evidence on behalf of fundamentalvariation in proces-
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sing efficiency as the explanation of differences in g suffers from a numberof

construct validity weaknesses. Although composite predictions reveal mod-

erate to substantial connections, these connections often incorporate

unanalyzed as well as analyzed parameters. Whenthe details of the connec-

tions are examined,it is clear that alternative interpretations — such as con-

sistency of sustained, voluntary effort —can noteasily be dismissed. In order

to establish the constructvalidity of processing/ability connections, it seems

necessary to have morespecified and clearertests.

Cognitive Correlates: From processes to abilities. The logic of in-

vestigating the connections between processing and mentalability has been

used in a wide variety of studies, not just those which have presumed a g

model. The pioneering work of Hunt (1978; Hunt, Lunneborg, & Lewis,

1975; Lansman, Donaldson, Hunt, & Yantis, 1982) and his colleagues helped

to establish the research paradigmsto study such connections. From its in-

ception, Hunt’s approach did not presumeto be related necessarily to g. In-

stead, its goal was to study the connections between cognitive processing and

specific abilities, such as performance onverbal ability tasks (Hunt, 1978).

The study by Lansmanetal. (1982) carries this research paradigm further

by explicitly looking for the pattern of relationships within and between a

battery of experimentally derived parameters of processing and a battery of

psychometric tests. The ability tests were selected so as to form factorsfre-

quently found in the psychometric literature, specifically crystallized (Gc)

and fluid (Gf) intelligence, spatial visualization (Gv), and clerical speed and

accuracy (CPS). A series of confirmatory factor analyses of the data from 91

college students who took 16 psychometric tests and six processing tasks

(three each in computerized format and paper and pencil format) revealed

the four psychometric factors already mentioned, and also permitted the ex-

traction of the commonvariance from a series of 18 parameters drawn from

the processing tasks. The processing variance was separated into the proces-

ses involved in the three tasks: mental rotation, letter matching, and sentence

verification. Relating the psychometric and processing factors to each other,

Lansmanetal. (1982) report that mental rotation speed wasstrongly corre-

lated with Gv (.78); letter matching speed was correlated with CPS (.69); and

sentence verification speed wascorrelated with both Gc (.28) and CPS (.38).

They argue that the most important finding from this study is the specificity

of the relationships between the processing measures and the psychometric

ability factors. They note further that the absence of any relationship be-

tween the processing factors and Gf (— .10, .02, and .00) might be viewed as

troublesome, but contend Gf measuresa specific ability of inductive reason-

ing. In any case, the pattern is argued to be interpretable, especially in the

connection between mental rotation and Gv,and the (weaker) connection be-

tween sentence verification and Gc: “The experimental results complement

the psychometric studies by connecting them to literature that explicates the
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details of the processes of memoryreferencing and visual image manipula-

tions ” (Lansmanetal., 1982, p. 379).

Note, however,that the connections between processing and ability in this

study are reported exclusively in terms of the correlations between derived

factor scores from each domain.In order to understandthese relationships

more completely, it is necessary to know howthesefactors, especially the

processing factors, were established. In describing this procedure, they note

that:

Within each experimental task, the correlations between RT measures based on

the computerized version and numbercorrect on the paper and pencil version

were quite high. However, the correlations between corresponding derived

measures(i.e., slope of the RT function for the mental rotation tasks, the NI-PI

difference in the letter matching tasks, and negation time in the sentence verifi-

cation task) were low. For this reason, we did not use these derived measuresin

defining the generalfactors. . . . Littleinformation waslost by omitting the de-

rived scores, since correlations involving derived measures showed the same

pattern as correlations involving mean RT anderror scores. (Lansmanetal.,

1982, p. 369; emphasis added).

In other words, the “derived” parameters, which are the primary meansof

“explicating” the details of processing potentially involved in the perform-

ance of the more complex tasks, are not includedin the processing factors.

Instead, the processing factors are, to borrow Horn’s (1984) phrase, a “mis-

cellaneouscollection”of indices from several tasks which are only coinciden-

tally experimental in nature. That the derived parameters show the same

“pattern”of correlationsis difficult to interpret; whether the magnitudes are

at all similar to the reported factor correlations can not be determined.

What exactly these “processing” factors are capturing is thus unclear.

There are several reasons, however, to suspect that much more than simple

processing is incorporated into the processing factors. As but one example,

consider the reported error rates on the computerized version of the mental

rotations task (Lansmanet al., 1982, Figure 2, p. 357). They range from near

zero errors at 20-degree rotation, to 15%-20%errors at 140- and 180-degree

rotations. Across tasks (computerized to paper and pencil), the correlations
of percent errors with slope is about .20. What this suggests is a quite sub-
stantial speed-accuracy trade-off, and it may well be that differential strate-
gies of overall approachto the task are embeddedin the “processing”factors,
hence further confounding the processing/ability connections.

Lansmanet al. (1982) seem to comeclose to dismissing the originallogic of
the cognitive correlates approach. The use of derived parametersas less am-
biguous andless arbitrary variables with which to discover the underlying
components of complex performanceis dismissed, in favor of an empirically
more promising, but analytically undefined, “processing” factors approach.
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They argue,in fact, that “it is naive to expect individual differences in broad

aspects of intelligence to be ‘accountedfor’ by information processing rates,

let along any single rate measure”(p. 379). Not only are the “processing”fac-

tors undefined, they are probably undefinable, in the same waythat psycho-

metric factors are unable to establish underlying validity on the basis of cor-

relations among performanceindices.

It would seem moreinformative to retain the original logic of theoretically

derived parameters, and to investigate them in an explicit construct valida-

tion model. Following a series of investigations into developmental and indi-

vidual differences in cognitive processing, Keating, List, and Merriman

(1985) undertook such an investigation. Much of the work on whichthisis

based is conceptually similar to that described above, and has been reviewed

elsewhere (Keating, 1984). Here, we briefly describe only the logic and out-

come of the most complete of the validation studies.

The study was designed as a two-tiered convergent/discriminantvalidity

investigation. It was similar conceptually to the Lansmanet al. (1982) re-

search described above, although it included an age factor as well—eighth

graders and college students. We investigated the two domainsof verbal and

spatial ability (Keating et al., 1985). The psychometric factors were defined

by a set of group andindividual tests drawn from these two domains. At the

processing level, each subject participated in six experiments. Three of these

experiments were designed to tap long term memoryretrieval access, and

three investigated mental rotation. We derived one key parameter from each

experiment, which wastheoretically the one mostrelated to the hypothesized

cognitive process. For retrieval, these were NI-PI differences (Posner &

Mitchell, 1967) from both simultaneous and sequential presentations, and

the response time to judge whether an item belonged to a specified category,

calculated as the slope of RT across (dimensionally scaled) levels of salience

(e.g., bird-robin versus bird-turkey). For rotation, the reaction time to judge

whether objects were shown as normalor mirror image, calculated as slopes

of RT across degrees of rotation, for schematic faces, and for alphabetic

characters with and without advance informationasto orientation.

Thelogic of this validity study is straightforward. At the level of proces-

sing, differently derived parameters of retrieval efficiency should converge

more closely with each other than with parameters of mental rotation effi-

ciency, and vice versa. Thisis the first tier of convergent/discriminantvalid-

ity. On the secondtier, the rotation parameters should predict the spatial

ability composite more accurately than the verbal ability composite, and the

retrieval parameters should reverse this pattern.

This is precisely what did not occur (Keatinget al., 1985). The processing

parameters showedno particular convergence within the hypothesized con-

structs, nor did they predict the appropriate ability domain. In fact, ina

series of multiple regressions, the sets of processing parameterswereaslikely
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to predict the inappropriate ability domain as the expected one. We regarded

these data as rather striking disconfirmation of a quite plausible validity

model relating cognitive processing, and its development, to psychometric

ability. In restricting the investigation to explicitly specified parameters, so as

to retain the desirable features of nonarbitrariness and nonambiguity, what

was discovered was the lack of any interpretable processing/ability rela-

tionship.

Hunt(1985) viewed these conclusionsas an overreaction to a disappointing

data set. Rather than a dispute over empirical findings, however, what we

wish to emphasize hereis the necessity of clear statements aboutvalidity cri-

teria. It is no doubtpossible to obtain empirically robust relationships among

some measures derived from some experimental tasks, and psychometric

ability scores. What is proving more difficult 1s to do so while retaining the

advantages of the experimental, analytic approach. As we noted above, the

value of using experimental parametersis not the tasks in which they happen

to be embedded, but rather the theoretical specification of the relevant pro-

cessing mechanisms.In this sense, the use of “composite” processing factors

seems to makelittle analytic sense. When such precautions are taken, the

construct validity of the processing/ability connectionis elusive.

Componential Models: From skills to processes. Early in the search for
processing bases of cognitive ability, Sternberg (1977) proposed an alter-

native approach: the “componential” model. Rather than trying to identify

unconfounded parameters of basic cognitive proceesses, and then relating

these to ability measures, Sternberg proposed analyzing existing measuresof

complex performance(i.e., ability tests), and identifying the relevant proces-

ses required for that performance. In an ingenious methodological ap-

proach, Sternberg “decomposed”performance on complextasksinto simpler

elements, by having subjects perform the task with greater or lesser amounts

of the needed information specified on different trials. For example, on

analogies of the form A: B: : C: D, Sternberg (1977) showed one, two, or

three of the terms for a subject-controlled “encoding” period, and then

showed the remaining terms (with a forced choice between a D and a D’ op-

tion), with instructions to respond as quickly as possible. By contrasting per-

formanceacross conditions using a series of multiple regressions, he was able

to estimate the contributions of various specified components.

This thoughtful proposal has confronted somesignificant difficulties.

Since these have been commentedonextensively (Sternberg, 1980, and asso-

ciated commentaries), we only briefly summarize them here. In addition,

Sternberg (1984) has implicitly rejected some of the assumptionsofthe origi-

nal componential model, and has expanded the model to include “metacom-

ponents”andsocial/cultural components,at least partly in response to some

of the problems noted below.

First, the modeling procedure of task decomposition seems to work best —
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and perhaps only—on discrete and more easily specified tasks. Thus,

picture/piece analogies, which involve only a small set of itemsreiterated fre-
quently through the task, are more easily modelled than are the more open-
ended verbal analogies (Sternberg, 1977). Second, when the derived para-
meters — estimated from the multiple regression beta weights — are correlated
with overall task performance,it is the unanalyzed components(e.g., the re-

sidual) which show significant correlations. This is the recurring problem

noted above: Unanalyzed reaction time composites maycorrelate highly, but

these correlations can not be meaningfully interpreted. Third, some ambigu-

ity of interpretation is evident in some presumably specific components. For

example, Sternberg (1977) named the amountof time subjects took in the

self-controlled part of the analogies task “encoding,” and reported the unex-

pected finding that subjects who took /onger to processtheinitial terms did

better on the overall task. Of course, this is easily reinterpreted not as a spe-

cific measure of encoding processing, but rathera strategically driven (since

it was underthe subject’s control) estimate of extracting useful information

from the initial terms — something like “study time.”

For these and other reasons, Sternberg first supplementedhis theory by the

inclusion of metacomponents (1980), which are strategic and learning aspects

of task performance, which in turn coordinate the processing components,

and then later by the inclusion of social/cultural or context components

(Sternberg, 1984). The componential core of the theory is somewhat sub-

merged underthese higherlevels of the “triarchic” model. Further, it is not

immediately apparent whetherstrategy, knowledge, and cultureare easily or

productively investigated as psychological componentssimilar to basic pro-

cessing. It is apparent that, however submerged, the fundamental of the

theoryis still at the internal processing level.

The critical question for a theorist of intelligence to ask is that of how those dif-

ferences in knowledge cameto be. Certainly, sheer differences in experience are

not perfectly correlated with levels of expertise. . . . Individual differences in

knowledge acquisition havepriority over individual differences in knowledge.

(Sternberg, 1984, p. 285).

Of course, one might havea different theory about knowledge acquisition

than the accumulation of “sheer experience” (e.g., Keating & MacLean,in

press). In any case, this assertion needs to be lookedat empirically, which will

necessarily involve morecareful attention to developmental histories, a goal

which we applaud.

Factorial Developments: Processing changes as factor validity. As
with other psychometrically derived models of intelligence, Horn’s (1980)

theory claims to explain individual and developmental differencesin intellec-

tual behavior by positing an underlying mental ability. In Horn’s model, cul-
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tural effects are taken into accountbyfactor analyzing the underlying ability
into two sub-abilities—Gc (crystallized intelligence) and Gf (fluid intelli-
gence). As noted above,this distinction is an ambiguous one.
The strongest version of Horn’s claim vis a vis developmentaldifferencesis

that Gf showssubstantial decline through the adult years, that this declineis
real (Horn & Donaldson, 1976), and thatit is largely but not wholly ac-
counted for by declines in specific cognitive processes characterized as
involving attentiveness, incidental learning, alertness, and organization in
short-term memory.

How does Hornarrive at this list of mental processes? He uses a part-
correlation strategy to isolate statistically some of the key tasks, and hence
inferred intellectual processes, which contribute to the change functions over
the adult years in Ge and Gf. This strategy is analogousto the componential
approach of Sternberg (1977) or the cognitive correlates approach of Hunt
(1978) or Keating (1984), except that, in this case, the inferences are based on
the reduction of the construct-validity correlations. That is, when intellec-
tual “process” factors are partialled out of the age-Gf or the age-Gccorrela-
tions, the magnitude of the correlations is presumably reduced in propor-
tional degree that these factors (i.e., “process” marker tasks) are accounting
for the age changes in the Gf or Gc dimensions. In Horn (1982, Figure 7,
p. 267) these age change claims are depicted. In brief, Gf is shown as
declining about 3.7 IQ point-equivalents per decadeofthe adult years, while
Gc rises a similar magnitude. For Gc, the key process variables identified
(and therefore those variables most responsible for Gc increases with age) are
the factors:

TSR:

_

tertiary storage and retrieval — whichis defined by tasks such as the
number of associations generated by subjects in response to a target
word; and

USES: defined by the numberof uses for common objects generated by
subjects.

Horn (1982) interprets this factor pattern as indicating moreflexible access to
a greater store of information in long-term memory,for older as compared to
youngeradults.

In contrast, the Gf declineis bestinitially explained by four factors. These
are (Horn, 1982, p. 264):

EOG: Organization at the stage of encoding in memory (which accounts
for much ofthe short-term memory involvement in GF decline)

COS: Concentration-attentiveness, as in trying to trace very slowly
(which also accounts for much short-term memorydecline in Gf as well
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as Gf decline in ability to divide attention and maintain clerical-

perceptual speediness)

EIR: Eliminating irrelevancies in concept attainment (which accounts

for much of the incidental memory involvement in Gf decline)

HYP: Hypothesis formation in the 20-questions game (which,like EIR,

accounts for muchofthe incidental memory involvementin Gfdecline).

Partialling out any three of these four factors accounts for abouthalf of the

Gf decline. The remainderof this section examinesthreecritiques directed to

this set of claims.

A thoroughcritique of specific tasks and their interpretations is beyond the

scope of this review; nevertheless, an important general question is whether a

consistent and meaningful alternative interpretation can be advancedfor the

factor patterns and associated “processes” described above. In other words,

is the inferred criterion of what is considered “fluid” intelligence in the

Cattell-Horn model the only reasonablewayofinterpreting this evidence? As

discussed above,in termsof overall construct validity, it is not clear that any

interpretation can be determined as being most accurate on the basis of the

psychological performance data alone.

Given our interpretation of “fluid intelligence,” how does this impact on

the interpretation of the age-change data? In other words, do Horn’s “proces-

sing” markers for age changeserve to validatethe original factor model? This

would only be true if the “processing” markers were themselves relatively

unambiguously interpretable. We would cite two concernsin this regard —

task meaning andpractice effects.

The meaning of the task, and the performance-based inferences about

competence, may themselves vary with age. As one specific example, the

20-questions game, the key task for HYP (as described above) mayrest upon

a different set of cognitive schemata for the 20-year-old science major as

comparedto theelderly retiree —and not merely as a “poorer” set of schema

for the latter. For example, given the older adults’ generally broader knowl-

edge base, they may form substantive hypotheses earlier in the questioning.

Althoughthis is not as useful a strategy in the constraints of this artificial

task as highly abstract “categorical narrowing” wouldbe,it is likely a highly

efficient strategy in analogousreal-world tasks. Indeed, Chi, Glaser, and

Rees (1982) review a substantial amountof the expert/novice literature, and

conclude that experts do in fact move to substantive hypothesis formation at

an earlier point than do novices. Older adults, then, may not be employing

less efficient strategies or have deficient HYP processing, but are inappropri-

ately applying highly effective strategies from their own experience. College

students, in contrast, may be characterized as in a “learning” phase,in which

being an “expert at being a novice”is at a premium in their cognitive activity.

A somewhatnarrowerbutstill crucial concernis the effect on performance
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of practice directly with tasks or tests used to measure “non-systematically-
acculturated”ability. This is of greatest concern for tasks used to experl-
mentally infer underlying cognitive processes thought to be moreorless inde-
pendentof learning or transfer (Salthouse, 1982). In a review ofthis litera-
ture, Salthouse (1982) contends that performance on many such experi-
mental tasks is highly susceptible to practice effects. If this is the case, then
attempts to infer decline in “basic” cognitive processes arelikely to be diffi-
cult as well.

In summary,then,it is clear that serious doubts can be raised with respect
to the claim that fluid abilities show an invariant and necessary decline. A
consideration ofthe criterion of intelligence employed, the models of devel-
opment assumed, and the prevalence of practice effects, calls into question
these claims. We wish to point out once more, however,that alternative views
are not validated by merely raising these doubts. In this case, however,it is
not clear that the appeal to “processing” as thebasis for validity is entirely
successful, since the processing parameters are themselves open to multiple
interpretations.

Summary: Threats to construct validity. Throughout our selective, but
we believe representative, review of the empirical literature on the connec-
tions between cognitive processing and cognitive ability, we have stressed the
validity concerns specific to each research paradigm. Whatis evident from
this review is the striking similarity of the potential threats to validity across
these diverse approaches. Here,webriefly restate in summary fashion those
key concerns. These validity concerns do not comprise an exhaustive list, of
course; rather, they are those which are mostrelevant to the specific goal of
accounting for cognitive ability variance in cognitive processing terms.

These issues divide neatly into two general categories, which we can iden-
tify as principally psychometric concerns versus principally experimental
concerns. In uniting correlational and experimental methodologies, there are
both risks and benefits (Keating, 1984). The majorriskis that the results are
vulnerable to both internal and externalvalidity threats.

Within the psychometric category, three major items are to be addressed:
convergent and discriminant validity issues; subject selection; and proce-
dures adopted in accounting for ability variance. First, the psychometric ne-
cessity for establishing both convergent and discriminant validity by using a
variety of tests presumed to measure a rangeofabilities is well established.
Unfortunately, such concern is relatively more rare when it comesto cogni-
tive processing parameters. It can not simply be assumedthat even carefully
specified parameters from well-analyzed tasks are isomorphic with the hy-
pothesized process (Morrison, Lord, & Keating, 1984). Convergent parame-
ters from different tasks would be a major advanceonthis front.

Second, it is advisable to consider carefully the range and representative-
ness of subjects included in such studies. Cognitive processing parametersare
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typically not robust, often being measured in differences of less than 50

milliseconds across conditions. Contrasting retarded and nonretarded popu-

lations, for example, for the purposes of inferring a processing basis ofabil-

ity differences might be quite misleading. The absolute differences on the ex-

perimental tasks between the populations maybe attributable to a wide range

of noncognitive as well as cognitive differences.

Third, there seems to be an emerging pattern within this literature that the

more carefully specified and rigorously validated the processing parameters

become,the /ess cognitive ability variance they accountfor. Indeed,it may be

“naive,” as Lansmanet al. (1982) argue, to expect otherwise. In some not too

distant future, it may well be possible to do meta-analytic reviews of the con-

nection between processing variance and ability variance.If, in that analysis,

those studies employing only carefully defined processing parameters are

separately considered, it seems likely that they would be substantially less re-

lated to ability variance; that is, greater rigor = less variance accountedfor.

Given this, the temptation is to increase the variance accounted for by using

more general, albeit confounded, parameters (e.g., total RT), or to embed

the carefully analyzed parameters in some compoundvariable (latent or oth-

erwise) which will correlate better with the ability measures. We contend that

this is a temptation to be resisted. Otherwise, the signal advantage of seeking

a processing basis for ability is compromised or lost. What wehave,instead,

is a replay of the samedifficulties of interpreting factor structures post hoc,

which undermined psychometric theory—and which componential analysis

was Originally designed to overcome (Keating & Bobbitt, 1978).

The threats to internal validity—the category of experimental validity

concerns — are moreinterrelated and can be briefly described. These revolve

around the issue of unambiguousinterpretation of the derived parameters

from the processing tasks. The major concern is that such parameters may

capture morethan just processing variance; indeed, they may often be partly

or wholly confounded with other, nonprocessing aspects of performance.

Whengroup(e.g., age) or individual comparisons are being made,thisriskis

enhanced (Cole & Means, 1981; Roth, 1983). A convenient way of codifying

these concerns is to explore thoughtfully the other major categories of the

processing “system” which might confound speedorefficiency interpreta-

tions (Keating, 1984): differential content knowledge, or differential famili-

arity with the stimulus materials or other features of the experimental task

(MacLean & Keating, 1986); differential procedural knowledge,or strategic

knowledge (sometimesreferred to as “control process,” Roth, 1983); and dif-

ferential motivation or willingness to participate at high levels of arousal

throughout the experimental task. This last is clearly difficult to ascertain,

but the internal evidence from someprocessing investigations suggests thatit

is nontrivial (e.g., Carlson et al., 1983). One strategy is to attempt to equate

for these pre-existing differences among subjects by using processing param-
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eters from that portion of the curve after subjects have reached asymptote

(Salthouse, 1982). There are very few such studies which use these parameters

to account for ability variance, but if they were successful, they would be

quite convincing.

From Cognitive Reduction to Developmental History

Wehave organized this empirical and conceptual review, thoughhighlycrit-

ical, with what we hope to be a constructive goal in mind.A rigorousanalysis

of the validity requirements of investigations which seek to use cognitive pro-

cessing to account for cognitive ability differences, both developmental and

individual, should be helpful in future research. Although space constraints

permit only the briefest discussion of these research directions, we would like

to include somesuggestions.

The validity issues embedded in the review and summarized above are

likely to be of most immediate use in research which carries forward some

version of the original componential agenda. It may well be that the

approachhas not been sufficiently explored. Detterman (1984), in criticizing

what he regarded as Sternberg’s (1984) too-rapid abandonment of a com-

ponential agenda, noted cogently that the mathematical requirements of a

componential modelare in fact quite modest. Even a small number of com-

ponent parameters, each of which correlates, say, .10 with a target ability,

might account for a substantial portion of the total ability variance, if they

each make independentcontributions. Of course,in this case it would be nec-

essary to obtain robust replications not only of the magnitude of the multiple

Rs, but also of their patterns, but the possibility should not be dismissed. On

the other hand, such traditional componential approachesdo need,at a mini-

mum, to makethe theoretical claims to valid processing explanations ofabil-

ity clear enoughto be testable. As we have notedin this review, inattention to

this critical issue can generate seemingly substantive findings which, uponin-

spection, rest on somewhatshaky or ambiguous foundations.

Alternatively, one might expand the componential notion to include novel

components,as in Sternberg’s (1984) metacomponentsof learning and trans-

fer, and “context” components of social and cultural background. In these

cases, it is even morecritical to be clear about the theoretical status of these

novel components. Short-term memoryprocessing efficiency, for example,

has the advantage ofclarity, even if it turns out to accountforlittle ability

variance. Whether “cultural context” can be meaningfully studied as an indi-

vidual psychological componentis less immediately obvious.

A final alternative we note hereis a loosely defined research program we

have described in somedetail elsewhere as “reconstruction in cognitive devel-

opment”(Keating & MacLean,in press). We argue that both explicit and im-

plicit structural models — psychometric, Piagetian, and componential — have



268 KEATING AND MacLEAN

given too shortshrift to other methodsofinvestigating cognitive activity and
cognitive development. We proposethere the incorporation of theories and
methods which moreconsciously address questions of the individual’s devel-
opmental history. This can be approached both throughreconsideration of
extant empirical findings—as illustrated in several examples above—and
throughresearch directly on the cognitive socialization experiences of chil-
dren and adults.

Of course, such socialization investigations rely on well-developed models
of cognitive activity. If, as we suspect, the empirical findings such as thosere-
viewed here are moreuseful as highly sensitive indicators of knowledgedif-
ferences, rather than underlying processing differences, then those methods
and techniquesare crucial to a socialization, or knowledge acquisition, per-
spective. Indeed, appropriate use of structural models, whether conceivedin-
itially as seeking to remove confoundsfrom processing interpretations, or as
seeking to explore the construction of a knowledgeor skill domain, might
well discover themselves to be on a single path afterall.
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CHAPTER 8

The Role of
Mental Speed in Intelligence:

A Triarchic Perspective

Diana B. Marr and Robert J. Sternberg
Yale University

The notion that mental speed is an important aspect of intelligence dates

back to psychology’s earliest inquiries into the nature and expression ofintel-

ligence, usually with the proviso that intelligence is related to the individual’s

speed of cognitive processing, as distinct from his or her general temporal

style or preference (e.g., Spearman, 1927). However, distinguishing between

capacity and preference for speedis a tricky business. Unless the perceived

relevance of mental speed in a given task is equivalent for all individuals,

measures of mental speed may be confoundedbydifferential motivation to

perform quickly. At the same time, individual differences in experience with

any given task are likely to produce individual differences in speed of per-

formance, independent of any general capacity or preference for mental

speed. In addition, different levels of analysis are likely to result in very dif-

ferent estimates of an individual’s “mental speed”(e.g., overall speed of per-

formancevs. speed of specific component processes). Thus, to understand

the relationship between mental speed andintelligence, it is necessary to un-

derstand the perceived relevance of speed for any giventask, the individual’s

prior experience with the task, and the information-processing components

that are involved in task performance.

Althoughthe relationship between speed andintelligence spans a broad

range of cognitive tasks and behaviors, in this chapter we shall limit our

discussion to speed in the execution of three classes of behavior: habituation,
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becauseit is one of the earliest behaviors for which a relationship between

speed andintelligence has been found; automatization, because ofits appli-

cability across task domains and behaviors; and choice reaction time, be-

cause of the impressive results and intense controversy produced by research

in this area. Weshall begin with a very general overview of the apparentrela-

tionship between intelligence and speed within each of these three classes of

behavior. Then, following a brief description of Sternberg’s (1985) triarchic

theory of intelligence, we shall reevaluate the evidence within the framework

of that theory, and present our ownview ofthe value andlimitations of men-

tal speed as an indicatorof intelligence.

EVIDENCE FOR THE RELATIONSHIP

BETWEEN INTELLIGENCE AND MENTAL SPEED

From early infancy through adulthood, individual differences in the speed

of at least some cognitive responses appearto berelated to individual differ-

encesin intelligence. For example, studies of infant habituation rate (i.e., the

amount of exposure to a new stimulusthat is required for the infant to re-

spondto that stimulusasif it were an old, familiar stimulus) have suggested

that more intelligent infants habituate more quickly than dolessintelligent

infants. McCall and Kagan (1970) foundsignificant correlations between in-

fant habituation rate and concurrent measures of cognitive ability. Morere-

cently, research by Fagan and McGrath (1981) has found correlations be-

tween the speed with which infants habituated to new visual stimuli at 5 to 7

months of age, and their vocabulary scores at 7 years of age. Lewis and

Brooks-Gunn (1981) have found similar correlations between habituation at

3 months, and Bayleyintelligence test scores at 24 months,of age.

Insofar as habituation depends primarily upon the cognitive processes nec-

essary to transform theinitially novel stimulus into something morefamiliar,

habituation rate may be considered a reflection of cognitive processing

speed. However, habituation rate almost certainly depends upona great deal

more than cognitive processing speed. For example, Fagan and McGrath

(1981) have suggested that individual differences in habituation rate mayre-

flect individual differences in infant recognition memory;for habituation to

occur after repeated exposuresto the stimulus, the infant must recognize that

the stimulus is the same stimulus presented in previoustrials. If more intelli-

gent infants have superior recognition memory,this superiority would al-

most certainly result in faster habituation. Individual differences in habitua-

tion rate also mayreflect differential motivation or interest in novel stimuli

(e.g., Berg & Sternberg, 1985), or differences in attentional capacity. If we

assumethat the individual’s information processing is limited by competing

demands uponhis or her attentional resources(e.g., Hunt & Lansman,1982;
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Kahneman, 1973), then the infant who allocates attention to nonstimulus

properties of the experimental condition (orto his or her internalstate) will

have fewer attentional resources available for the habituation stimulus, and

will be likely to habituate more slowly. Even if attentional capacity is nota

limited resource, the developmentof effective strategies and skills of divided

attention appear to require extensive practice with the specific attentional

tasks (e.g., Spelke, Hirst, & Neisser, 1976), so individual differences in prior

experience may influence habituation rate when divided attention is neces-

sary. Although the speed with which an infant achieves an habituated re-

sponse probablyis an indication of intelligence, the processes through which

that response is achieved are far from clear. Speed of response is not

necessarily a sign of mental speed; although a pure cognitive speed factor

may play an importantrole in determining habituation rate, so may memory,

motivation, interest, attention, and prior experience.

Intelligence also has been related to the speed with which individuals

automatize repetitive sequences of mental operations (e.g., Lansman,

Donaldson, Hunt, & Yantis, 1982; see also Hunt, Frost, & Lunneborg,

1973). The source of this correlation is open to speculation, but, here again,

a pure cognitive speed factor seems unlikely. Perhaps moreintelligent indi-

viduals are simply more aware of the advantages of automatizing their be-

havior. Indeed, academically superior students have been found to differ

substantially from their less able counterparts in their ability to recognize

how particular characteristics of a task contribute to that task’s difficulty,

and to adjust their strategies accordingly (Bransford, Stein, Vye, Franks,

Auble, Mezynski, & Perfetto, 1982). In other words, the correlation between

intelligence and automatization speed may be groundedin higherlevel stra-

tegic processes, and not in mental speed, per se. Alternatively, motivational

variables may influence both automatization speed(limiting the individual’s

willingness to invest the additional effort required for rapid automatization)

and performance on psychometric measuresofintelligence.

Some of the most controversial findings relating mental speed to intelli-

gence comefrom studies of choice reaction time. Reaction-time research has

a long and often embarrassing history, but the theoretical commitment and

methodological rigor of recent investigators have broughtthis field back into

the mainstream of psychological theory and research. Although we do not

agree with all of their conclusions, researchers such as Jensen (1980a, b,

1982a, b) and Vernon (1981, 1983) have done impressive work, and their

findings have been a sourceofintellectual stimulation for psychologists.

In Jensen’s choice reaction-time procedure (Jensen & Munro, 1979), the

subject sits with one finger resting on the “home”button of an apparatus with

eight lights; the subject’s task is to remove the finger from homebase as

soon as a light is turned on, and to movethefingerto a button directly below

that light, pressing the button to turn off the light. The subject’s reaction
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time, or initiation time(IT), is the interval between onset of the light and re-
movalof the finger from home base. Movement time (MT)is the interval be-
tween leaving homebaseandpressing the buttonto turn outthelight. Typi-
cally, a subjectwill first receive a series of trials using one light, followed bya
secondseries of trials with two lights, a third with four lights, and a fourth
with eight lights (with any unusedlights and buttons covered by a template).
In the one-light condition, stimulus location is fixed, and the only uncer-
tainty in the task is temporal onset of the stimulus; as the numberof uncov-
ered lights increases, stimulus location becomesincreasingly uncertain.

Jensen has foundthat IT, intraindividual variability (standard deviation)
of IT, and slope of IT acrossset sizes all show significant negative correla-
tions with psychometric measures of intelligence (e.g., Jensen 1980a, b,
1982a, b; Jensen & Munro, 1979). Similar results have been obtained by
Vernon (1981, 1983) in studies of mentally retarded individuals and of
university students. Jensen also claims that, as task complexity (i.e., set size)
increases, so does the correlation of IT with psychometric measures of
intelligence.

What do these findings tell us about mental speed andintelligence? As
compelling as someofthe results may appeartobe,it probablyis too early to
make anydefinitive statements about the natureof the relationship between
choice reaction time andintelligence. Do the measuresreally reflect capacity
for mental speed,or are they, like most other measures, subject to contami-
nation by individual differences in information-processing strategies, per-
ceptual skills, motivation, and attention? Jensen hasinterpreted the fact that
IT increases with set size as evidence that the subsequent motorresponseis

programmed during the IT phase: Presumably, the greater stimulus uncer-

tainty at larger set sizes requires more (and more complex) response program-

ming. Hence, the speed of complex response programming might accountfor

much of the relationship between IT andintelligence. However, Longstreth

(1984) has found that modifying the task so that subjects were not required to

program a motor response producedonlya slight reductionin the slope of IT

over set size. Thus, it appears that the increase in IT with set size cannot be

adequately explained by Jensen’s response preparation/programming
hypothesis.

If response preparation does not accountfor the relationship among IQ,

IT, and task complexity, what else might be involved? Perhaps motivational

and attentional factors come into play. Jensen (1980a) has argued against a

motivational explanation, noting that the IT response occurspriorto the in-

dividual’s conscious awareness of the stimulus, and that subjects are unable

to “fake” a slower response withoutfalling seven or eight standard deviations

below their normal response speeds (Jensen, 1982a). However,althoughthis
apparent insensitivity of the measure to conscious effort might seem to pre-

clude direct motivationalinfluences on reaction time, motivation may never-
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theless play an indirect role, mediated by the allocation of attentional re-

sources to the task. As set size and task complexity increase, so do the

attentional requirements of the task. The unmotivated subject may be more

likely to divide his or her attention between the reaction-time task and other

features of the experimental environment, and this divided attention may

produce slowerreaction times. Similarly, anxiety (and any numberof other

emotional or physiological conditions) may divert necessary attentionalre-

sources from the task as the subject attends to changesin his or her internal

state.

Finally, reaction time (particularly choice reaction time) is notoriously un-

stable over time and over different stimulus modalities (Jensen, 1982b;

McCall, 1979). Is this instability a function of reaction-time measures, or

does the problem lie in the construct itself? Although the source of reaction-

timeinstability is not clear, evidence that transient changesin physiological

state may affect reaction time across a variety of different measures(e.g.,

Church, 1984; Kamiya, 1961; Meck, 1983; Woodworth & Schlosberg, 1954)

suggests at least the possibility that the construct itself may be unstable. Un-

less general intelligence is correspondingly unstable (which seems not to be

the case), instability of reaction-time measures maypose theoretical as well as

practical problems; but, even if the instability is merely a measurement prob-

lem,it seriously limits the practical utility of reaction time as a measureofin-

dividualintelligence.

In conclusion, there seemsto belittle doubt that the speed of cognitive re-

sponse is related to performance on many psychometric measures ofintelli-

gence,at least within certain populations in Western society. But is the speed

of response an accurate reflection of mental processing speed, and are our

measuresofintelligence accuratereflections of intelligence? These questions

will be addressed in the remainder of this chapter, within the framework of
the triarchic theory.

AN OVERVIEW OF THE TRIARCHIC THEORYOF INTELLIGENCE

Thetriarchic theory of humanintelligence defines intelligence as the mental
activity underlying purposive adaptation to, shaping of, and selection of
real-world environments relevant to one’s life (Sternberg, 1985). The
triarchic theory consists of three subtheories: a contextual subtheory, a
componential subtheory, and an experiential subtheory.
The contextual subtheoryrelates intelligence to the requirementsofthe in-

dividual’s environment, limiting the domainofintelligence to that subset of
mental activity that is relevant to effective interaction with one’s external
real-world environment. Thus, even if a particular mental capacity is a uni-
versal componentofintelligence, the intelligent expression of that ability
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mayvary from culture to culture (and, within any culture, may vary from en-

vironment to environment). Different environments notonlygive rise to dif-

ferent definitions of intelligence, but also may shape that intelligence in

somewhatdifferent ways. Rewardsfor the exercise and developmentofpar-

ticular cognitive abilities will vary from one environment to another, as will

the opportunities to exercise and developthese abilities.

Because intelligence is defined in terms of environmental adaptation, a

rich understanding or assessment of intelligence can be achieved only

through the use of contextually relevant tasks. The problem, of course,is

that adaptive behavior for any given timeor culture is not necessarily adapt-

ive for another. To the extent that the contextual relevance of these tasks

varies substantially for different individuals, assessment should vary

accordingly.

Whereasthe contextual subtheoryrelates intelligence to the external world

of the individual, the componential subtheory describes the internal mental

processes that are likely to be involved in intelligence across different envi-

ronments. The componential subtheory proposes that three classes of

information-processing components underlie intelligent functioning:

metacomponents, performance components, and knowledge-acquisition

components. In this chapter, we shall discuss only the first two classes,

metacomponents and performance components. (For a discussion of

knowledge-acquisition components, see Sternberg, 1985.)

Metacomponentsare higher order processes that are used to plan, moni-

tor, and evaluate one’s task performance. They allow the individual to (a)

identify the nature of the problem, (b) determine the appropriate mental rep-

resentation for the problem,(c) select the necessary operations for problem

solution, (d) choose a strategy for combiningthese operations,(e) decide how

to allocate mental resources, and (f) monitor one’s problem-solving perform-

ance. These metacomponents, which are used acrossa widevariety of tasks,

are believed to be largely responsible for generalintelligence, or g. Perform-

ance components are the lower order processes that are invoked to perform

the necessary problem-solving operations. These components are used to

encode, combine, compare, and respondto stimuli. The relative importance

of these two classes of componentswill vary from task to task and, for any

given task, will vary as a function of prior experience. Whena taskisrela-

tively novel, metacomponentswill be of primary importance; whena taskis

fully automatized, performance components will play a largerrole.

Although these components maybe universal,it is clear that their degree of

involvement in any given task may vary from culture to culture and from en-

vironment to environment. Tasks that are essential to environmental

adaptation are apt to be practiced to the point of automatization, whereasto-

tally irrelevant tasks are not. Thus, if the same task is used to measureintelli-

gence amongindividuals from widely divergent environments,it is rather un-
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likely that this task will measure the same thing for all individuals. For

individuals who are extremely experienced with the task, success may depend

primarily upon the use of performance components; for those whoare ex-

tremely inexperienced with the task, success may depend primarily upon

metacomponents. Clearly, this difference makes cross-cultural comparisons

problematic.

Even within a single culture or environment, we are faced with the problem

of deciding the relative contributions of metacomponents and performance

componentsto intelligent performance on any given task. How novel or fa-

miliar should a task bein order to provide the best estimate of intelligence?

The experientialsubtheory addressesthis question, specifying optimal points

on the familiarity-novelty continuum for the expression and assessment of

intelligent behavior. Tasks that are extremely novel are apt to berelatively

poor measuresofintelligence. If the task requirementslie too far outside of

the individual’s prior experiences, he or she may getstuck in the early stages

of metacomponential processing and be unableto applyhis or her full range

of abilities to the problem. If, for example, the individualspendsall of his or

her time trying to determine the appropriate mental representation for the

problem, task performancewill provide a poorindication of the individual’s

functioning on other metacomponents or performance components. On the

other hand,if the task is already automatized, performance will dependpri-

marily upon the speed and accuracy of a preselected sequence of perform-

ance components, with only a negligible contribution from metacom-

ponents. Thus, the best overall measure of intelligence will be obtained by

using a task that is relatively (but not extremely) novel or a task thatis in the

process of becoming automatized.

In summary, the contextual subtheoryrelates intelligence to successfulin-

teraction with the external environment; the componential subtheoryrelates

intelligence to the internal processes that underlie effective person-

environmentinteraction; and the experiential subtheory specifies the optimal

level of task novelty for the assessment of intelligence. In the remainder of

this chapter, we shall consider some of the evidence for and against mental

speed as a central aspect ofintelligence, and evaluate this evidencein light of

the triarchic theory of humanintelligence.

THE CONTEXTUAL SUBTHEORY: HOW RELEVANTIS MENTAL SPEED?

Relevance of the Construct

The emphasis on mental speed in western societies is evident in our popular

notions of what it meansto be intelligent. We commonly refer to those we

consider intelligent as “quick” and to those we consider unintelligent as
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“slow.” The young child who learns very quickly is often judged to be more
intelligent by teachers and parents thanthe child wholearns very slowly, even
if the quick learner forgets almost as quickly as he or she learns and the slow
learner never forgets. Similarly, the child whois alwaysthefirst in the class to
come up with reasonably correct answersto the teacher’s questionsis apt to
be considered “brighter” than the child whotakesslightly longer to formulate
more precise answers. At least within academic environments in whichit is
consistently rewarded, mental speed would appearto be advantageousto en-
vironmental adaptation. But is mental speed equally adaptive outside of the
classroom?

Empirical evidence for the value placed upon mental speed outside of aca-
demic settings has been foundin studies of the factors underlying the concep-
tions ofintelligence held by widely diverse groups of individuals in this soci-
ety (e.g., Berg & Sternberg, 1984; Sternberg, Conway, Ketron, & Bernstein,

1981). In these studies of people’s “implicit theories of intelligence,” individu-
als were askedto list what they consideredto be particularly characteristic at-
tributes of exceptionally intelligent individuals. The hundredsof specific and

general attributes that were generatedin this fashion were then compiled into

a single list. All of the listed behaviors were rated by subjects, who indicated

the extent to which they considered each behaviorto be characteristic of ex-

ceptionally intelligent individuals. These ratings showed that individuals at

all ages (college-age through post-retirement years) andall walksoflife (stu-

dents, psychologists, housewives, professionals, white-collar, blue-collar,

and unemployed workers) considered behaviors that explicitly referenced

cognitive speed (e.g., “learns rapidly”) to be somewhatcharacteristic ofintel-

ligence. It should be noted, however, that the relative importance of these be-

haviors differed somewhat from groupto group,and for no groupwerethey

the most important characteristics of intelligence. Furthermore, when the

ratings were factor analyzed to identify the factors underlying people’s im-

plicit theories of intelligence, no “mental speed” factor emerged, and factor

loadings of speed-related behaviorswererelatively low on all factors forall

groups except psychologists. And even among psychologists, the only factor

loading higher than .60 wasthe loading of “learns rapidly” (loading .61 ona

verbal intelligence factor).

What do these results tell us about the contextual relevance of mental

speed? Theratings of speed-referenced behaviors suggest that mental speed

(or, at the very least, certain instantiations of mental speed) is considered by

many people in our society to be moderately indicative of intelligence. To the

extent that the individuals who provided these ratings considered intelligence

to be an adaptive constellation of abilities, and not merely an irrelevant con-

struct created by educators and psychologists, these ratings suggest that men-

tal speed probably serves an intelligently adaptive function in dealing with

certain aspects of the external environment.
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However,it is not clear that mental speed is equally relevant acrossdiffer-

ent cultures and subcultures. In fact, there is strong reason to believe that cer-

tain minority subcultures differ dramatically in their views of timein general,

and of speed in particular. For example, Heath (1983) has noted that the pre-

vailing attitudes about time in a lower-class black community were dramatic-

ally different from attitudes in a lower-class white community. Whereas the

activities of lower-class white youngsters are constrained by fairly rigid time

schedules (a time to eat, a timeto sleep,etc.), the flow of time for the lower-

class blacksis flexible and unscheduled (eat when hungry, sleep whentired,

etc.). Thus, attention to temporal constraints and schedules develops early

for the white youngsters; for the black youngsters, such constraints and

schedules seem arbitrary and irrelevant.

Jones (1984) and Jones and Block (1984) have suggested that white Ameri-

cans generally live their lives according to linear time(i.e., events are meas-

ured “by the clock”), but that black Americans tend to use nonlinear time

(i.e., the passage of time is measuredbythe flow of events). Jones and Block

argue that a primary value of linear time is the prediction and control of fu-

ture events. For generations, black Americanshadlittle opportunity to con-

trol their own futures, rendering linear time largely irrelevantto their lives.

Mentalspeed, of course,is a function of linear time, and its perceived value

or intelligence is apt to be constrained bythe limited relevanceoflinear time.

Assuming that individuals are to some extent motivated to perform “intelli-

gently” in testing situations, those with nonlinear temporal orientations may

be less likely to view attention to linear time (and to optimization of mental

speed) as intelligent. Thus, even if these individuals are fully capable of high-

speed performance, they may deliberately choose notto use this ability.

The cultural differences in temporal attitudes are also evident when we

compare western and non-western cultures. For example, in the agricultural

Kipsigi culture of rural Kenya, infants are in constant contact with their

mothers, who are thus able to attend to their needs as they arise (Super &

Harkness, 1980). With infants carried by their mothers in a sling during the

day, and sleeping in their mother’s bed at night, there is no need to impose

any external temporal schedule. Whenever infants are tired, they can sleep;

wheneverthey are hungry, the motheris there to feed them. Underthesecir-

cumstances,there is little need for the developing youngster to attend to time

as an external and relevant entity. As the child matures, of course, time be-

comes more important to his or her life, but the relevant units of time for

measuring and predicting life events are larger and less precise thantherele-

vant units of time in Western society.

This is not to say that mental speedis entirely irrelevant in certain cultural

or subcultural milieux. In fact, it is difficult to conceive of an environmentin

which the capacity for rapid cognitive processing would not be adaptive,if

only in coping with sudden emergencysituations. However, the extent to
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which the capacity is adaptive will depend upon the environmental frequency
and importance of such situations. Furthermore, even in environments in
which the capacity for mental speed is of paramount importanceto survival,
the “intelligence” of maximizing mental speed in any given task will depend

upon the perceived consequences of high-speed performance.If the individ-

ual sees no particular payoff for attending to the speed of his or her perform-

ance, then speed of performance might be a more accuratereflection of the

individual’s preferred temporal style than of his or her capacity for speed.

Thus, insofar as different environments vary in the degree to which they en-

courage certain temporalstyles and preferences, capacity and preference are

apt to be confounded.

This problem has not gone unnoticed by those who propose mental speed

as a universal determinantof intelligence. For example, Jensen (1980a) has

argued that racial differences in temporal style or preference are minimal,

and are unrelated to choice reaction-time measures of cognitive speed. How-

ever, the data upon whichthis conclusion rests are somewhat dubious. Tem-

poralstyle or preference (i.e., “personal tempo”) wasassessed using a task in

which subjects were given a grid consisting of 300 empty squares and werein-

structed to draw Xs in as many squares as possible within a fixed period of

time. Instructions were varied to emphasize or to de-emphasize the impor-

tance of speed, and results were compared for black and white subjects. Un-

der both instructional conditions, results showedlarge individual differences

but no significant racial differences on the Making Xs test. Jensen takesthis

finding as evidence that racial differences in personal tempo arevirtually

nonexistent, and concludes that racial differences on measures of cognitive

speed are therefore uncontaminated by temporalpreferenceorstyle.

This optimistic conclusion, however, presupposesthat the Making Xs Test

is an adequate measure of temporal preference. Unfortunately, there seems

to be little evidence that this is the case. Because the test was designedto as-

sess personal tempo, independentof cognitive speed, it obviously was neces-

sary to use a task in which the cognitive demandswerepractically nil. In so

doing, however, one must implicitly accept two premises: (a) the individual’s

personal tempo (or temporal preference) is invariant across cognitive and

noncognitive situations and task domains; and (b) the specific task selected to

assess personal tempois appropriate for this purpose. There seemsto belittle

or no evidence to supporteither of these premises, and considerable reason to

question them both.

First, 1s personal tempo really invariant across situations and task do-

mains? Is preference for rapid motor response (e.g., making Xs) perfectly

correlated with preference for rapid cognitive response? The answerto these

questions requires comparison of cognitive and noncognitive preference but,

apart from reflexive responses, wefind it difficult to conceive of a purely

noncognitive task. Furthermore, even if such a task could be found,it would
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be necessary to compare it with a measure of preference for cognitive speed

(which surely would be confounded with cognitive capacity).

Second,is the MakingXs Test an appropriate instrumentfor assessing per-

sonal tempo? Doesthis test really assess temporal preference independent of

cognitive abilities? Probably not. In fact, making Xs seems noless cognitive

than many reaction-time measures. Certainly, the kinds of cognitive de-

mandsare different (attention to spatial dimensions and fine motor coor-

dination in making Xsvs. attention to temporal onset and spatial location in

Jensen’s choice reaction-time task), but the relative magnitude of these de-

mandsis unclear. To what extent do individual differences in performance

on this task reflect strategic differences, differences in simple motorspeed,

differential speed/accuracy tradeoffs, etc.? At present, we simply do not

know.

In conclusion, the capacity for rapid cognitive processing probably is

adaptive, relevant, and intelligent. However, the extent to which any given

expression of that capacity is intelligent is apt to vary acrosscultures, situa-

tions, and task domains. Thus, the assessment of mental speed necessarily re-

quires that the particular instantiations of mental speed that are tapped by

our measurement instruments be equally relevant for all examinees.

Relevance of Measures of Mental Speed

Even if mental speed per se were found to be equally relevant to intelligent

environmental adaptation acrossall cultures and subcultures,it would still be

necessary to demonstrate the relevance of the specific tasks used to assess that

speed. In the case of early infancy habituation studies, relevance may not be

muchofan issue. One of the major tasks facing the infantis the transforma-

tion of the initially novel elements of his or her environment into something

more familiar and comprehensible. Thus, any habituation stimulus may be

relevant to the infant simply becauseofits novelty, and habituation to almost

any stimulus maybeintelligent. In fact, Raaheim (1974) defines intelligence

as the ability to transform what is relatively novel into something more

familiar.

Although task relevance maynot be at issue in infant habituation,it ap-

pears to pose a particularly sticky problem for automatization studies. On

the one hand,if the task is high in contextual relevance(i.e., is genuinely im-

portant to environmental adaptation),it is likely that at least some subjects

will have had prior experience with variants of the task (if not with the spe-

cific task itself). If the prior experience is approximately equalfor all sub-

jects, the consequences may be minimal: The behavior of interest may al-

ready be partially automatized, so that the obtained rate of automatization

will reflect only the latter portion of the automatization curve. If, however,

individuals differ in their prior experience, the behavior may be partially
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automatized for someindividuals and notfor others, in which casetheinter-
pretation of individual differences in the time required to achieve full
automatization becomes problematic. On the other hand,if the task is low in

contextual relevance, it may notbe particularly intelligent to automatize per-

formance. Indeed, even somerelevant behaviors are best left unautomatized,

because of the loss of responsive flexibility that necessarily accompanies

automatized performance. Fortunately, contextual relevance often can be es-

tablished within a specialized context thatis relatively distinct from the indi-

vidual’s larger environment. If an individual knowsthat he or she will have to

repeat a particular behavior 2000 times in a laboratory experiment, then

automatization becomesrelevant even if the task itself is totally irrelevant.

Thus, the best measures of automatization are apt to be extremely novel,

seemingly irrelevant tasks that must be performed rapidly for a long enough

period of time to make automatizationitself relevant andintelligent. Within

any particular experimental context, the relevance of rapid automatization

of a task is not necessarily dependent upon the contextual relevance of the
task itself.

The same probably can not be said about typical choice reaction-time mea-

sures. Whereas automatization has the advantage of ultimately reducing the

cognitive demandson the subject, millisecond improvements in choice reac-

tion time mayoffer no particular advantage to the examinee. Ofcourse,rele-

vance might be established by offering rewards for rapid performance,but a

deliberate emphasis on extrinsic motivation (possibly at the expense of any

pre-existing intrinsic motivation) introduces a new set of complications that

most of us would rather avoid. So, it appears that the relevance of these mea-

sures must be established by providing tasks in which high-speed perform-

anceIs naturally advantageous. Most existing choice reaction-time measures
fall somewhatshortof this ideal.

Is relevance really essential in these studies, given the evidence that reac-

tion timesare not subject to conscious control, and hence are presumably un-

affected by any perceptions of task relevance orirrelevance? Webelieve that

it is, for a number of reasons. Although Jensen’s (1980a) finding that in-

structing subjects to “try harder”or to “take it easy, don’t try so hard” has no

effect on performance is encouraging from somepoints of view, we do not

find it to be compelling evidence that performance is unaffected by atten-

tional factors. Indeed, these instructions keep the subjects’ attention focused

on the task at hand. If whistling “Dixie,” listening to Berlioz, or counting

backwards from 100 while performing the task could be shown to produce no

change in reaction times, we would be inclined to agree that allocation of

attentional resources (deliberate or otherwise) plays no role in task perform-

ance. In the absence of such evidence, insofar as relevance mayaffect atten-
tion to the task, some consideration of relevance seemsessential.
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Conclusions

In summary, mental speed appearsto be adaptive andintelligent for at least

some segments of western society on at least some tasks. A review of the con-

textual relevance of mental speed suggests that mental speed mayberelevant

for “all of the people, some of the time.” However, any given measure of that

speed is probably only relevant for some of the people, some of the time.If

this is true, then theoretical understanding of the role of mental speedin in-

telligence, and the practical assessment of that speed, require knowledge of

the specific kinds of mental speed that are relevant to specific groupsorindi-

viduals in specific situations or conditions. In particular,it is likely that dif-

ferent cultural (and subcultural) attitudes about time and speed maylead to

cultural (and subcultural) differences in the perceived relevance and intelli-

gence of any specific instantiation of mental speed. However, despite these

cultural variations, the capacity for mental speed is probably at least some-

what relevant and somewhatintelligent in virtually all cultures.

The relevance of our measures of that speed, however, is a bit more prob-

lematic. Many infant habituation and adult automatization paradigmspro-

vide a sort of de facto relevance because of their unique subject characteris-

tics or because of the intrinsic advantages of speed within the specific

experimental context. In infant habituation studies, the special characteris-

tics of infants may provide someassurance that almost any novel stimulus

will be of somerelevanceto the infant, if only becauseit is novel. And, given

the extraordinary amountofinitially novel information that every infant

must process in order to makesense of this confusing new world, rapid pro-

cessing is certainly an adaptive (andintelligent) behavior. In automatization

studies that require subjects to perform the same task repeatedly over long

periodsof time, the task itself may be irrelevant but automatization is likely
to be very relevant (andintelligent) becauseit will serve to reduce the cogni-
tive demandsofthe task. Thus, although careful attention to the relevance of
the tasks and stimuli employed in studies of habituation or automatizationis
desirable, it may not be essential. However, task or stimulus relevanceis apt
to play a substantial role in performance on measures of choice reaction
time.

The relevance of speed in typical choice reaction-time paradigms is
unclear. There is no obviousintrinsic advantage to high-speed responses, and
the tasks themselves are of questionable relevance for most subjects. Therel-
atively high correlation between choice reaction time andintelligence (e.g.,
Jensen, 1980b, 1982a; Vernon, 1981, 1983) suggests that the choice reaction-
time tasks are tapping somethingthatis related to measures of generalintelli-
gence. But is that something actually cognitive processing speed? Perhaps,



284 MARR AND STERNBERG

but in the absence of convincing evidence against motivationalor attentional

explanations, such a claim seems premature.

THE COMPONENTIAL SUBTHEORY: SPEED OF WHAT?

Up to this point, we have described mental speed merely as speed of cogni-

tive processing. But exactly what kind of cognitive processing is involved in

the relationship between mental speed andgeneralintelligence? According to

the componential subtheory, metacomponential processing should account

for much ofthe “intelligence” of mental speed. This view is consistent with

the current evidence that strategic (i.e., metacomponential) differences are

often associated with differences in intellectual ability. And, because differ-

ent strategies lead to different combinations of lower order information-

processing components (i.e., performance components), they almost cer-

tainly will produce differences in overall speed of performance. Thisis not to

say that differences in the speed with which the performance components are

executed aretotally irrelevant to intelligence. However, we expect that these

differences account for only a small proportion of the total variance in

intelligence.

Mental Speed and Metacomponents

Whatis the evidence for individual differences in metacomponential pro-

cessing, and how mightthese differences be related to mental speed andintel-

ligence? Oneespecially fruitful line of research has examined individual dif-

ferences in information-processing strategies. Individual differences in

solution strategies have been found for a widevariety of tasks, including the

Raven Progressive Matrices (Hunt, 1974), sentence-picture verification

(MacLeod, Hunt, & Mathews, 1978), linear syllogistic reasoning (Sternberg

& Weil, 1980), mental rotation (Pellegrino & Kail, 1982), and visual compari-

son and representation (Cooper, 1982). Furthermore, manyofthese strategic

differences appearto be related to individual differences in specific cognitive

abilities, general intelligence, or both. For example, MacLeod, Hunt, and

Mathews (1978) have found that the strategies subjects use on sentence-

picture verification tasks can be predicted from their relative verbal and spa-

tial abilities; Sternberg and Weil (1980) found similar relationship for the

use of linguistic vs. spatial strategies in the solution of linear syllogisms. In

fact, Baron (1978) and Hunt (1978) have suggested that individual differ-

ences in global problem-solving strategies may account for a major portion

of the variancein intelligence.
Additional evidencefor the relationship between metacomponentsandin-

telligence has been foundin studies of analogical reasoning. For example,
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Sternberg (1977) has found that moreintelligent individuals are more consist-

ent in their use of a systematic strategy for problem solution. Sternberg

(1981) also has found that moreintelligent individuals spend relatively more

time on global planning(i.e., developing a strategy that will be applicable toa

group of problems) andrelatively less time on local planning(i.e., developing

a specific strategy for each problem).

There also appear to be ability-related differences in the allocation of

attentional resources. For example, Bransford et al. (1982) found that, in

learning new information,attentional allocation was determinedbythediffi-

culty of the information for academically superior fifth-grade students,

whereasdifficulty had little or no effect on the attentional allocation ofless

able students. And in a study of executive processes in reading, Wagner and

Sternberg (in press) found that more skilled readers were morelikely to ad-

just their allocation of attentional resources to achieve specific reading objec-

tives than wereless skilled readers.

Individual differences in metacomponential processing have obvious im-

plications for measures of mental speed. For example, if somestrategies are

faster than others, then individual differences in processing speed may be

confounded with individual differences in strategy. Similarly, individual dif-

ferences in attentional allocation may have a profound effect on problem-

solving speed. For example, Marr and Sternberg (1986) found that, when

intermediate-school students were required to incorporate novel information

into an otherwise familiar verbal analogies task, intellectually gifted students

allocated significantly more attention to relevant novel information than to

irrelevant novel information; their nongifted peers, on the other hand,actu-

ally gave more attention to irrelevant than to relevant information. If mental

speed were assessed using only the irrelevant condition, the results would in-

dicate that gifted students were faster information processors than nongifted

students. On the other hand,if mental speed were assessed usingonlytherel-

evant condition, the results would indicate that gifted students were nofaster

than nongifted students.

Given that such metacomponential differences do exist and are related to

other measures of intelligence, how might these differences be reflected in

measures of habituation, automatization, and choice reaction time? Webe-

lieve that metacomponentsarelikely to play a majorrole in all three phenom-

ena. Furthermore, we believe that the correlation between intelligence and

mental speed in these behaviorsis largely a function of individualdifferences

in the quality (and not just the speed) of metacomponential processing.

Little is known aboutthe specific cognitive processes involved in infant ha-

bituation to novel stimuli. As mentioned earlier, Fagan and McGrath (1981)

have argued that habituation rate is largely a function of recognition mem-

ory, rather than of simple processing speed. Weareinclined to agree with this

explanation, but with a metacomponential emphasis on the strategic aspects
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of memorytransfer, storage, andretrieval. For any given stimulus, only a se-
lected subset of stimulus properties can be committed to memory,soselective
abstraction and encoding of the most useful and relevant properties is essen-
tial. The selection of an optimal subset of stimulus properties and optimal
storage andretrieval cueswill play a majorrole in the subsequentaccessibility
and utility of the information.If, as we suspect, the relationship betweenin-
telligence and differential attention to relevant vs. irrelevant information
(Marr & Sternberg, 1986) begins to develop in infancy, then moreintelligent
infants will be likely to identify and attend to a small, relevant subset of stim-
ulus characteristics, whereasless intelligent infants may devote moreoftheir
attention and processing resourcesto irrelevant stimulus characteristics. Asa
result of this strategic difference, more intelligent infants may actually en-
gage in less (but more useful) information processing. Because they are
committing only relevant information to memory, habituation will occur
more rapidly thanforless intelligent infants, even if there are no differences
in memorycapacity or in the speed of individual component processes.

The role of metacomponential processing in automatization is somewhat

more obvious. Atthe very least, the individual must(a) identify the specific

problem requirements;(b) select a solution strategy and a set of performance

components to carry out that strategy; (c) monitor task performance and,if

necessary, modify the preselected strategy; (d) discover which sequence (or

sequences) of performance componentsare constant over problemsor task

repetitions; (e) determine the point at which the advantages of metacom-

ponential monitoring are outweighed by its costs; and (f) relinquish meta-

componential control of processing. It is easy to see how individual differ-

ences in these metacomponential processes could berelated to individualdif-

ferences in both speed of automatization and intelligence. Inaccuracy in

identifying the problem (Stage 1) or inefficiency in the selected strategy

(Stage 2) will lead the individual into a time-consuming feedback-correction

loop (Stage 3), which must be terminated before the individual can determine

which processes might be targeted for automatization (Stage 4). Further-

more, if Stages 1-3 are terminated prematurely, an inappropriate strategy

will be carried overinto the later stages, requiring additional metacomponen-

tial monitoring and altering the cost-benefit ratio of this monitoring in Stage

5. (For a discussion of premature termination of information processing se-

quences, see Sternberg & Rifkin, 1979, and Sternberg & Nigro, 1980.) Thus,

the speed of automatization is probably less dependent upon the speed of

metacomponential processing than on the accuracyof that processing.

Choice reaction time appears to be less metacomponential than habitua-

tion or automatization. As we notedearlier in this chapter, Jensen (1980a,

1982b) and Vernon (1981) have reported that no learning occurs as a result of

repeated practice on the choice reaction-time task. Jensen (1980a) has also

found that subjects are unable to estimate their own performanceat better
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than chancelevels, and are unable to increase or decrease their reaction times

when instructed to do so. This evidence, combined with the fact that the

choice reaction-time response may occur prior to the subject’s conscious

awarenessofthe stimulus, would seem to rule out any majorrole, at least at

the conscious level, for metacomponents. At the same time, Jensen’s claim

that the correlation between reaction time and intelligence increases as a

function of task complexity (albeit with a rather low ceiling on complexity)

suggests that metacomponents probably are involved. Webelieve that these

apparent contradictions can be resolved, and that metacomponential proces-

sing accounts for much of the reaction-time/intelligence correlation.

The claim that no practice effects occur overtrials certainly seems to argue

against extensive metacomponential solution monitoring or correction.

Longstreth (1984) hascriticized the methods by which practice effects were

assessed (generally across sessions rather than within sessions), and hasat-

tempted to demonstrate that practice effects do, in fact, exist. However,

Longstreth’s experiments were conducted using a substantially modified

version of Jensen’s apparatus. Instead of simple lights, Longstreth’s stimuli

were digits (1-4), each displayed in the center of a video screen. Whereas

Jensen’s response buttons were directly adjacent to the stimulus lights, the

buttons in Longstreth’s apparatus were placed on a separate response

console. Longstreth did find practice effects, but his modification of the

original procedure introduces new transformations(digits) and memoryre-

quirements (location and assignment of response buttons) that were not pres-

ent in the original task. Thus,it is not clear that Longstreth’s results can be

generalized to Jensen’s measures of choice reaction time.

Perhaps Jensen and Vernonare correct, and practice effects do not occur.

What might this absenceof practice effects tell us about the choice reaction-

time task? Possibly that the task is already automatized when subjects enter

the laboratory. Considering the nature of the task, this may not be an entirely

unreasonable assumption. The signal light-button press pairing occurs so

frequently in our daily experience (in video games, multiline telephones, au-

tomated cameras, and a vast array of electronic equipment) that some degree

of automatization seems almost inevitable. However, even if the taskis al-

ready automatized, individual differences in metacomponential processing

may shapetask performancein at least two ways: throughindividual differ-

encesin allocation of attentional resourcesorin the particular responsestrat-

egies that previously have been automatized.

Mental Speed and Performance Components

Obviously, individual differences do exist in the speed and efficacy with
which performance componentsare executed. And even if metacomponents
are the major determinants of intelligence, performance components un-
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doubtedly have some impact on intelligence, if only because the metacom-

ponents depend upon prompt and accurate feedback from the performance

components. For most of these performance components, faster processing

tendsto be related to higher scores on psychometric measuresof intellectual

ability (Sternberg, 1977). In fact, Sternberg and Gardner (1983) have found

correlations as high as .8 between certain component scores and scores on

psychometric tests of inductive reasoning.

However, for at least one of these performance components (encoding),

speed of execution is negatively correlated with measuresofintellectual abil-

ity. Thus, even at the level of the performance components, high processing

speed may notnecessarily be indicative of intelligence. We suspect, however,

that the relatively longer time spent on encoding by moreintelligent individu-

als is a consequence of metacomponential strategy rather than simple proces-

sing speed. Moreintelligent individuals may well be encoding eachbit of in-

formation morerapidly thantheirless intelligent counterparts, but they may

be encoding more bits of information. Alternatively, more intelligent indi-

viduals may set a higher criterion for encoding accuracy, processing and

reprocessing each bit of information until this criterion is reached. In other

words, webelieve that the capacity for rapid execution of performance com-

ponentsis likely to be related to intelligence, but that the metacomponential

ability to employ that speed selectively is of far greater importance.

Although detailed information-processing models have not been devel-

opedfor habituation, automatization, or choice reaction-time measures, the

general performance components of encoding, combination, and compari-

son are certainly involvedin all three tasks. Given the cognitive complexity of

habituation and automatization (and the resulting metacomponentialinvest-

ment), we would expect the general speed with which performance compo-

nents are executed to play a relatively minor role. However, within-task vari-

ability in speed across performance components may have substantial

effects, particularly in the case of feedback mechanisms. For example,if

high-speed execution of a performance componentis coupled with relatively

slow feedback from the performance componentto the relevant metacom-

ponents, there maybelittle opportunity for metacomponential correctionsto

occur; by the time an error is detected, the individual may already have

moved on to another performance component.

This view of the effects of temporal variability is consistent with findings

(e.g., Jensen, 1982a) that moreintelligent individuals showless variability in

choice reaction time (suggesting, perhaps, that metacomponential feedback

and correction doplaya role in choice reaction-time measures). However,as

mentioned previously, the early onset of the response (possibly prior to con-

scious awareness of the stimulus) and the apparent absence of learning or

practice effects suggest that much of the response may be automatized long

before the individual is exposed to the specific experimental procedure.
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Thus, the speed with which performance componentsare executed probably

makesa larger contribution here than in habituation or automatization. In

fact, many of the problems with choice reaction-time measures mayresult

from the fact that performance on these measures depends so heavily upon

the speed with which performance componentsare executed.In particular,it

may accountfortheinstability of reaction times and for the disturbingracial

differences that typically are found on these measures(e.g., Jensen, 1982a).

Why should choice reaction-time measures be so unstable over time?

Jensen (1982a) has suggested that this instability is an “intrinsic organismic

phenomenon,” and does not reflect measurementerror in the instrumental

sense. But what might accountfor this organismic temporalinstability? Per-

haps the answer maybe foundin the noncognitive correlates of reaction time.

Kamiya (1961), for example, found that reaction time is affected by body

temperature, which naturallyfluctuates throughout the day. Woodworth

and Schlosberg (1954) found evidence that reaction time also varies in re-

sponse to various neuroactive drugs. Furthermore, both reaction time and

the accuracy of temporal judgments (e.g., estimates of interval duration)

have been shownto berelated to anxiety, nutritional factors (i.e., relative

amounts of proteins vs. carbohydratesin the diet), psychoactive drugs, and

body temperature (e.g., Church, 1984; Meck, 1983). Given the nature of

reaction-time measures, we can speculate that these noncognitive variables

are likely to act at the level of the performance components. Given the nature

of the noncognitive variables involved, their effects are likely to contribute

not only to intra-individual variability (i.e., standard deviation of IT), but

also to interindividual and intergroupvariability (i.e., racial differences in
IT).

Conclusions

In conclusion, it appears likely that the relationship between mental speed
and intelligence is largely dependent upon individual differences in the use
and outcomes(butnot necessarily in the speed) of metacomponential proces-
sing. For example, the efficient use of metacomponential functions mayin-
crease the speed ofinfant habituation by reducing the amountofinformation
that must be processed by the performance components (perhapsbyidenti-
fying and directing attention to particularly relevant stimulus properties). In
the case of automatization, accurate metacomponential processing mayin-
crease speed by facilitating the early selection and revision of appropriate
processing strategies, allowing the individual to minimize the amountoftime
spent in costly feedback-correction loops. Metacomponentsalso mayplay a
majorrole in choice reaction-time measures. Even if much ofthe task hasal-
ready been automatized, speed of performance may depend as much upon
the efficiency of the automatized strategy as on the actual speed ofthe indi-
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vidual performance components, thus providing an indirect indication of the

quality of metacomponential processing that was involved in automatizing

the task; in addition, attentional allocation may be an important determinant

of choice reaction time.

Metacomponents probably do nottell the whole story. Just as metacom-

ponential accuracy may contribute to mental speed and intelligence, the

speed and accuracy with which performance components are executed may

also play a role. In particular, the metacomponents can only functionin re-

sponse to prompt and accurate feedback from the various performance com-

ponents. In general, the speed of task performance probably dependsless

upon the absolute speed of performance components than uponthe variabil-

ity of that speed, and the accuracy of the feedback the performance compo-

nents supply.

In addition to the theoretical and empirical evidence,there are strong prac-

tical reasons for concentrating on metacomponentsrather than performance

components. In particular, the lower-order performance components are

morelikely to be affected by transient changesin the internal state of the or-

ganism (e.g., temperature, diet, anxiety). The relatively high sensitivity of

performance componentsto these transient internal states may account for

muchof the instability in reaction-time measures (which probably areinflu-

enced more than any other measures by the absolute speed of performance

components). Metacomponents,by contrast, are likely to be relatively stable

and insensitive to such changes.

THE EXPERIENTIAL SUBTHEORY: PRACTICE MAKES PERFECT?

According to the experiential subtheory, the best measures of intelligence

will be obtained from tasks that are either relatively novel or in the process of

becoming automatized. Obviously, measures of habituation and automat-

ization satisfy this criterion. Typical choice reaction-time tasks, however, do

not appearto be particularly novel, and the apparent absenceof practiceef-

fects (e.g., Jensen, 1980b) might seem to suggest that these tasks are not in

the process of being automatized. And yet, relatively high correlations are

consistently found between choice reaction-time and psychometric measures

of intelligence. If the experiential subtheory is correct (and webelieve, of

course, that it is), how can we account for these results? We believe that the

answer to this question lies in the nature of typical psychometric tests of

intelligence.

The most obvious source of the reaction time-intelligence correlations

would appearto be the shared emphasis on speed. However,the fact that the

psychometric tests were administered without time constraints in Jensen’s

studies seems to argue against this explanation.It is conceivable that the cor-
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relation reflects, in part, a shared overemphasis on performance compo-

nents, but this also seems unlikely. First, the fact that the correlation in-

creases as the reaction-time task becomes more complex suggests that

metacomponents play a major role. Second, given what we havesaid about

the relative stability of metacomponents and performance components, an

overemphasis on performance components (particularly on speed of per-

formance components) would appear to be inconsistent with the relatively

high test-retest reliabilities of most psychometric tests. Instead, we believe

that the high correlations mayreflect metacomponential consequencesofthe

relative locations of the psychometric and reaction-time measures on a

novelty-familiarity continuum.

Most psychometric intelligence test items are not particularly novel; nor

are they in the process of being automatized. To be sure,they are not fully

automatized either, but most test items depend uponthestrategic selection

and application of previously automatized sets of performance components.

In general, even the strategic (metacomponential) requirements of the task

are quite familiar to examinees. Thus,test scoresare likely to depend heavily

upon(a) the efficiency of previously automatized behaviors(reflecting the

quality of the metacomponential processing employedin the automatization

process); (b) the generalization of previously automatized behaviors to a new

problem situation; (c) the appropriate selection, combination, and applica-

tion of these automatized behaviors; and (d) optimal allocation of atten-

tional resources to the current problem. Webelieve that these four determi-

nants of test performanceare also likely to be involved in choice reaction-

time measures(although selection and combination probably play a much

smaller role in the choice reaction-time paradigm).

In other words, neither psychometric intelligence tests nor reaction-time

measuresassess intelligence at an optimal point on the novelty-familiarity

continuum (cf. Davidson & Sternberg, 1984). Both err in the direction offa-

miliarity, and therefore invoke certain shared processes that are commontoa

variety of familiar tasks. These two kinds of tests probably measuresimilar

subsets of intelligent behavior, and ignore many of the samehigherlevel

metacomponential aspects ofintelligence.

SUMMARY

In this chapter, we have examinedthe relationship between mental speed

and intelligence within the framework of Sternberg’s (1985) triarchic theory

of humanintelligence. The triarchic theory (a) limits the domainofintelli-

gence to that subset of mental activity that is relevant to the individual’s suc-

cessful interaction with the external environment(the contextualsubtheory);

(b) defines the classes of internal mental processes governing intelligent be-
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havior (the componential subtheory); and (c) specifies optimal points on a
novelty-familiarity continuum for the assessmentofintelligence (the experi-
ential subtheory).
A review of previous research on mental speed andintelligence suggests

that the capacity for rapid cognitive processing probably is somewhat adapt-
ive and intelligent across most, and possibly all, environments. However, the
degree to which mentalspeed is adaptive andintelligent may vary across tasks
and acrossindividuals, so that measures of the capacity for mental speed are
likely to be confoundedbydifferences in preference for mental speed. Thus,
understanding and assessment of intelligent mental speed depend upon
knowledge of the specific kinds of mental speed that are relevantto specific
groupsof individuals in specific kinds of situations.

It appears likely that the relationship between mental speed and intelli-
gence is largely dependent uponindividual differences in the accuracy (but
not necessarily in the speed) of metacomponential processing. The speed and
accuracy with which performance components are executed undoubtedly
contribute to intelligence, but their contribution is probably relatively small
in relation to higher level metacomponential processes. In fact, we believe

that individual differences in performance on most measures of mental speed

are determined moreby differences in the quality of metacomponential pro-

cessing than by differences in the speed of performance components.

Speed of performance is an uncommonly attractive and convenient de-

pendent variable. It is easily measured, often consequential, and clearly a

product of cognitive functioning. Measures of mental speed appearto offer

an elegant simplicity that has been lacking in so many other measuresofintel-

ligence. However, mental speed probablyis not a simple construct, but rather

the product of many complex mental processes, only some of whicharere-

lated to intelligence. Thus, further advances in our understanding ofintelli-

gence may depend upon ourability to isolate and understand thespecific

componentprocesses that contribute to the relationship between intelligence
and mental speed.
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CHAPTER 9

Inspection Time and
Intelligence

T. Nettelbeck
University of Adelaide

This is the problem whetherhigh speedin the performanceof easy tasks can be

taken as indicative of the ability to perform more difficult tasks without

pressure of time. (Thurstone, 1937, p. 249)

1. INTRODUCTION

The construct inspection time (IT) described in this chapter is derived from

a model for comparative judgment formulated by Vickers (1970, 1979),

which assumesthat processing leading to a decision begins with a series of

covert, discrete samples or “inspections” from sensory input. Each inspection

occupies a small, constant period of time. Thus, IT is one of a class ofvari-

ously named constructs reflecting evidence that there is some temporallimi-

tation to the rate at which informationis taken in for processing, so that sep-

arate elements of information falling within some minimum duration are

processed simultaneously. This concept of perceptual periodicity has a long

history in psychology (James, 1890) but detailed experimental investigation

of it appears to date from Stroud (1955).

The procedure for measuring IT proposed by Vickers, Nettelbeck, and

Willson (1972) involves what would be a very simple visual discriminative

judgment for almost anyone, across very wide ranges of age and ofvisual

intellectual abilities, except that duration of the test figure is restricted

to a brief exposure. This restriction results in a wide range of individual

295
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differences in the accuracy of performance, even within fairly homogeneous
groups. We maynote here that no differences have been found between the

sexes In a number of different IT tasks (Longstreth, Walsh, Alcorn,

Szeszulski, & Manis, 1985; Nettelbeck, 1973a; Nettelbeck & Kirby, 1983a;

Raz, Willerman, Ingmundson, & Hanlon, 1983).

MuchIT research has been concerned predominantly with comparisons

between mildly retarded adults and nonretarded children and adults, these

studies invariably demonstrating a marked deficiency amongretarded adults

that is equivalent to a lag in mental age (MA)ofat least 4 years. This work has

been reviewed elsewhere (Nettelbeck, 1985a) and will not be discussed further

here, exceptin so far asit pertains specifically to issues under consideration.

In practice, IT is the target duration necessary for discriminative perform-

ance in a task like that devised by Vickerset al. (1972) to be virtually free

from error. The possibility that individual differences in IT mayreflect dif-

ferences in measuredintelligence (IQ) wasfirst suggested by Nettelbeck and

Lally (1976). However,it has largely been the initiative of Brand (1981, 1984;

Brand & Deary, 1982) to give this idea theoretical substance.

Consideration of the problem referred to in the epigram openingthis chap-

ter, a quotation from Thurstone, begins in Section 2 with a discussion of the

relevance of mental speed to an understanding ofintelligence. Next, in Sec-

tion 3, a rationale underlying the definition of IT is outlined, together with a

description of different procedures for estimating IT. However, an evalua-

tion of assumptions behind these proceduresis left until Section 5, since the

discussion of these assumptions is mainly relevant to the issue of an associa-

tion between IT and IQ, research into whichis therefore first reviewed in Sec-

tion 4. Section 5 focuses onissues relevantto thereliability of different mea-

sures of IT and on whether IT provides an index of perceptual speed.

Additional theoretical difficulties for the interpretation of IT not considered

previously are also introduced in this section. Finally, an interpretation of

available data, in the light of these various considerations,is made in Section

6. Throughout the chapter, possible directions for future research are sug-

gested where these seem called for.

2. MENTAL SPEED

The intuition that there is a relationship between intelligence and some kind

of mental quickness — both constructs being assumedto be relatively perma-

nent individual attributes — also has an enduring history in psychology. At-

temptsto test this relationship maybesaid to have begun with Galton (1883),

andin the 40 years following this pioneering initiative a substantial body of

research was directed to the issue (McFarland, 1928). Although early re-

search was largely either unsuccessful in demonstrating any association be-
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tween speed and ability (Wissler, 1901), or highly problematical (Beck,

1933), a belief in some such relationship nonetheless generally prevailed. No

commenthasyet appearedin theliterature on this topic (so far as Iam aware)

as to whythis belief should have provedso resilient. Reasons can only be

speculated about, but may include the desirability to an emerging behavioral

science of the exact, ratio properties offered by timing events, when com-

pared with the available, less precise, methods for estimating ability. Be that

as it may, speed of intellectual functioning remained an important compo-

nentof influential theories of intelligence developed by Thorndike (1926) and

Thurstone (1938), and practical tests of abilities and aptitudes have tradi-

tionally allowed credit for faster performance.

Research evidence supporting an association between ability and mental

speed exists, althoughit is by no means unambiguous. While individuals who

produce correct solutions more quickly to test problems tend to get more

items correct than slower performers, irrespective of time constraints

(Dibner & Cummins, 1961; Heim, 1947; Heim & Batts, 1948; Heim, Watts, &

Simmonds, 1974), more able individuals have not always been found to be

faster in every situation than those less able (Jensen, 1982). Although correla-

tions between various measuresof reaction time (RT) and IQ have most com-

monly been negative, as predicted by a speed-intelligence hypothesis, they

have usually been small and seldom more than — .3 (Hunt, 1980). Jensen

(1979, 1982) has reported a stronger relationship when various parameters of

RT from different tests are regressed on to IQ,but the strength of association

has varied considerably acrossstudies involving subjects of different age, ed-

ucation, ability, and race, and with different parameters of RT. Further,

there are difficulties in accepting Jensen’s interpretation of his results

(Longstreth, 1984; Nettelbeck, 1985b; Nettelbeck & Kirby, 1983a), there be-

ing grounds on which to challengethe assertion that RT reflects only funda-

mental processes not influenced by higher-order cognitive skills.

Despite these doubts, it does appear from Jensen’s results that 1Q and

some aspects of RT in these investigations could share from between about

10% to 40% of variance in performance. However,it is not clear from these .

studies what the nature of mental speed is or whether such speedis unitary

(Jensen, 1979).

Cattell’s view is that mental speed is not unitary. Thus, Cattell (1971) has

pointed to empirical evidence for the existenceof at least seven kinds of men-

tal speed, these being expressed in different test situations. Perceptual speed

and speed of closure are identified as primary abilities contributing to a

broad, secondary “capacity” factor termedpowerofvisualization (g,), rather

than to either of the major broadfactorsfluidgeneralintelligence (g,) or crys-

tallized generalintelligence (g.). Three other kindsof speed,reflecting in turn

cortical alertness, motivation, and aspects of personal tempo,are essentially

personality characteristics but can influence abilities, contributing to a broad
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secondary factor termed general cognitive speed (g.).1 This is held to influ-
ence stages of information processing concerned with perceptual encoding,
memoryretrieval and executive control in relatively routine tasks or where
sometimestress is involved. Another primary speedability, motor speed, re-
lates to coordination rather thanto intellectual abilities. Finally, Cattell dis-
cusses a seventh conceptualization which “corresponds to each and every
ability, primary or secondary”(Cattell, 1971, p. 108). Although he appears to
doubt the theoretical utility of such a general speed factor, he nonetheless
identifies it as the “intellectual speed” defined by Furneaux (1960), linkingit
to “powerintelligence” and loaded byg, rather than by g..

The significant contribution of Cattell to this issue notwithstanding, the
nature and extent of an association between mental speed and abilityis still
not known, despite a century of research directed to the possibility, as
Berger’s (1982) thorough review makesclear. In part, this is because limita-
tions to the method of factor analysis make it incapable of unequivocally
resolving theoretical dispute (Eysenck, 1967; Sternberg, 1977); but also be-
cause, as yet, few experimental psychologists have attempted to develop a
theoretical framework adequate to sustaining a thorough analysis of mental
speed (Berger, 1982). There have been exceptions, however.

Recent attempts to specify the nature of mentalspeedin relationtointelli-

gence appear to stem from Eysenck’s (1953, 1967) concernto direct the study

ofintelligence towards an experimental framework,as an adjunctto thepre-
vailing correlational approach. As recounted by White (1982), Eysenck was
responsible for initiating the investigations that Furneaux (1952, 1960),

White (1973, 1982), and others have carried out to elucidate the significance

of speed of performancein intelligence tests. Furneaux’s work in particular

influenced Eysenck’s brief theoretical outline, which emphasized a dualvari-

able termed “quality,” constituted from “speed” and “power,” as the major

determinant of intellectual differences. Eysenck’s model also allowed for

some contribution from the mental processes and test materials involved,

similar to Guilford’s “structure-of-intellect” model (cf. “operations” and

“contents,” Guilford, 1956). Further, Eysenck recognized the influence on

actual test performance of noncognitive personality variables identified by

Furneaux as “accuracy” (an error-checking mechanism forrejecting incor-

rect solutions) and “continuance”(persistence in the face of task difficulty

 

'Hakstian and Cattell (1978) make some changesto the terminologyof Cattell’s (1971) theory,

for example general cognitive speed being replaced by generalperceptual speed (Gps). The two

authors express somewhatdifferent interpretations of this factor, Hakstian emphasizing that

closure(i.e., “completing the gestalt”), in addition to speed, is involved. They also introduce a

speculative third-stratum factor, capacity to concentrate, involving visualization and long-term

retention capacities as well as Gps. However, these issues are not crucial to the present

discussion.
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rather than abandonment). Although the nature of speed and powerwere not

spelled out, the quality of intellectual activity was assumedultimately to be

determined by the biological efficiency of nerve conduction.

This formulation has now been further developed in the light of work by

Hendrickson and Hendrickson (1980; see also A. E. Hendrickson, 1982, and

D. E. Hendrickson, 1982). Their theory seeks to explain their finding strong

correlations between IQ and the average total length of the trace of evoked

potential waveforms, obtained by electroencephalographic recording

(EEG). This measure of EEG is hypothesized to reflect the activity of

“chains” of “pulse trains” as information is processed by the brain. Accord-

ing to this model, those aspects of the brain responsible for intellectual per-

formance do notdiffer significantly among normal individuals with respect

to anatomy; the numberof pulses within a train is constant; memorycapacity

is constant. However, characteristic, inherent variations in temporal inter-

vals between pulses are held to exist between individuals; these variables in-

troduce unreliability into information conveyedby thepulse train and IQ dif-

ferences are the consequence of differences in the extent to which such error

is present. In this view, mental speed, as revealed when performanceis timed,

is not a primary characteristic of brain activity but, rather, a secondary con-

sequence of neural efficiency, inaccurate information processing resulting in

slower transmission time (Eysenck, 1982, 1984). Thus, ambiguity in the

earlier version of the theory aboutthe relationship between power and speed

is resolved; power derives from the capacity of the central nervous system to

process information accurately, the speed of such processing reflecting that

capacity.

Somewhatdifferent theoretical formulations to Eysenck’s have been ad-

vanced by Jensen (1979, 1982) and by Brand (1984; Brand & Deary, 1982). In

part, however, differences between these three theories reflect the different

experimental procedures usedto collect the data bases from whichthe theo-

ries have been constructed, and substantive differences between them may be

limited to Jensen’s interpretation of mental speed. All three hold in common

that mental speedis strongly associated with generalintelligence (g); this con-

cept of speed is therefore equivalent to Cattell’s broad speed factor, rather

than being limited to relatively narrow, specific domains of cognitive

activity.

Jensen (1982) provides the most detailed account to date of his model fora

relationship between RT and g. The brain is conceived as an information

processor of limited capacity with respect to (a) the amount of information

dealt with and the numberof operations performedat any one pointin time;

and (b) the duration of short-term retention without the transformation re-

quired for long-term storage. Thus, rapid encoding and storage operations

permit more accurate processing within a limited period of time, with indi-
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vidual differences in speed producing more profoundeffects with increasing
processing complexity. As in Eysenck’s theory, neural efficiency is assumed
in normalcasesto be an innate variable, the number of neural elementsacti-
vated by a given level of stimulus energy being dependent uponthelevel of

“noise” within the system. Although notstated explicitly, a basic assumption
in this theory is that differences in IQ are in part the consequenceofdiffer-
ences in chronic levels of internal noise. However, individual differences in
mental speed are central to Jensen’s theory and not simply the outcomeofin-
accurate processing. In addition to the ratio of signal to noise elementsacti-

vated, periodicities in these elements in oscillation between excitation and re-

fractoriness contribute to RT. Jensen does notspecify in detail how speedis

transformed into power, other than to speculate about relative advantage

from the cumulative effect of more rapid processing over very long periods

of time. His model does notdistinguish between the speed of different opera-

tions or stages within the overall process, although his discussion of capacity

limitations (Jensen, 1982) suggests that he is essentially concerned with cen-

tral aspects of processing, rather than with peripheral input or response exe-
cution stages.

The theory advanced by Brand (1984; Brand & Deary, 1982) specifies that

it is initial speed of apprehension during the early stages of perception that

determines the developmentof general intelligence. “Speed of apprehension”

and “perceptual speed” are used synonymously to mean the speed “of the

brain’s immediate reaction to sensory input — in the absence of any require-

ment for ‘thought’.” (Brand & Deary, 1982, p. 134). Thus, while “quick on

the uptake,” a person having high IQ will not necessarily appear to respond

quickly, since many everyday situations will involve higher-level complex

post-perceptual decisions, and the need to translate such decisions into ac-

tion. This model therefore avoids what Sternberg (1984) has termed the

“smart as fact” fallacy (p. 283), by distinguishing between speed of input at

the beginning of stimulus encoding that cannotbe influenced by conceptual

or personality variables, and the speed of subsequent processes, which can be

so influenced.

The capacity to take in information more quickly is held to increase with

ontogenetic development. Brand’s theory also allowsthe possibility that nor-

mal development sets some maximumceiling rate to perceptual processing,

which would eventually result in an asymmetrical, less spread distribution of

speed comparedto the IQ distribution. Forthis reason, and becauseg,is held

to exert greater influence than g. on performance at youngerlevels of MA,

Brand argues that the speed-ability relationship should be more discernible

at younger MA. Thus, although speed of apprehension providesthebasis for

intellectual development, additional genetic and environmentalvariables not

directly determining this speed increasingly cometo influence intellectual
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functioning. Individual differences with respect to such genetic determinants

permit the possibility also that some persons having higher IQ will not also

have above-average speed of apprehension;i.e., high speed of apprehension

maybe a sufficient but not a necessary condition for high adult IQ.

Brand’s theoryis specifically concerned with speed of intake as fundamen-

tal to g, being derived directly from research into an association between IT

and IQ. However,the theory is not inconsistent with Eysenck’s, insofar as

Brand considers that differences in mental speed mayderive from differences

in general neurologicalreliability, rather than from specific mechanismsthat

determine temporal functioning.

3. THE MEASUREMENTOF INSPECTIONTIME(IT)

3.1 Rationale

Vickers et al. (1972) described an early version of Vickers’ “accumulator

model” for discriminative judgment, which provided a theoretical rationale

for estimating IT, conceptualized as a fundamental temporal limitation to

the capacity of early perceptual processing. The summary of the theoretical

context which followsis limited for the present to procedures for measuring

IT, but will be expandedin Section 5.2(d), where limitationsto the rationale

for these measurementprocedureswill be discussed. The assumptionheldei-

ther explicitly or implicitly in most research to be reviewed in this chapter,

viz., that IT does provide a valid measure of perceptual speed,will be evalu-

ated in Section 5.3(c).

Briefly, the accumulator model assumes that sensory representation of

stimulation relevant to the required discrimination is accumulated over time

as it enters the processing system. This accumulation occurs against a back-

ground of existing neural noise arising from various external and internal

sources. Evidence favouring alternative decisions is summated in separate

memoryregisters, one for each alternative outcome. Accumulation proceeds

as a sequence of discrete inspections, each contributing some variable quan-

tity of information to the decision but occupying a constant period of time

(i.e., IT). A decision is made when evidence favouring one outcome sum-

mates to a predeterminedlevel that reflects the degree ofcaution adopted by

the individual for that particular judgment on that occasion. Thus, outcome

is the consequenceof a race between the contents of alternative counters; for

a 2-choice discrimination task, the accumulation process may be conceptual-

ized as two unidirectional random walks (Vickers, 1979). The overall time

taken when making a responseis therefore mainly determinedbythelevel of
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caution adopted bythe individual beforehand together with the individual’s
IT, according to the following equation:

L = (N x IT) + t, where L = responselatency;

N = total number of inspections made

to reach a decision;

IT = inspection time;

t = residual nondecision time associa-

ted with sensory delay and motor

performance.

According to this formulation, IT could be measured in a task requiring
only a single inspection, providing that the initial inspection favoured the
correct response andthat t was eradicated. Vickers et al. (1972) argued that
these requirements weresatisfied by a discrimination task involving twolines
of different length, the difference between these being equivalent to 0.8° of
visual angle. This value was more than 2.58 times 0.3°, their estimate of the
likely upper limit of noise in the humanvisual system, derived from their
reanalysis of data from elderly persons.? Provided that the observer had the

opportunity to make one inspection of the sensory data, this task should re-

sult in virtually error-free performance. By varying the exposure duration of

the discriminanda,it should be possible to estimate the minimum periodre-

quired for error-free performance, independently from the time takento reg-

ister a response. This procedure should therefore exclude the effects of t, and

also of conceptual factors related to motivation and caution which, in the

case Of RT measures, would be expected to result in more than a single
Inspection.

The theoretical significance of this last point has not been acknowledged

by all researchers adopting the IT construct. Thus, Sen and Goswami (1983)

followed a lines-discrimination procedure withoutrestricting access to short-

term visual storage, in line with Brand and Deary’s (1982) opinion that back-

ward masking (see below) may not becritical. However, although it may

prove possible to develop a method for measuring IT outside of a masking

procedure (an option considered further in Section 6), for the methods de-

scribed in Section 3.2 some kindofrestriction is essential to prevent (or at

least to minimize) intrusion by subjective cognitive variables determining

caution. Thetheoretical standing of IT as a precognitive variable rests on this

restriction. Similarly, tasks used by Mackenzie and Bingham (1985) and

Irwin (1984) introduce problemsof interpretation. The former task required

that subjects scan the screen to locate the target, therefore introducing the

 
Vickerset al. (1972) defined noise as the standard deviation ofa distribution of magnitudein

sensory effect from stimulation. Thus, the expected probability of error following one inspec-

tion from a difference corresponding to 0.8° would beless than .005.
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likelihood that more than one inspection would be necessary,so that strategy

differences could arise. Irwin’s task, involving the identification of an alpha-

bet character, is arguably sufficiently difficult to require several inspections

in order to offset levels of internal noise.

Vickerset al. (1972) achieved precisely restricted target exposure by using a

backward masking procedure to overwrite the target stimulus, thereby pre-

venting additional processing beyond the duration between target onset and

maskonset (“stimulus-onset-asynchrony” or SOA). An estimate(A) of IT was

objectively defined as the target stimulus duration that was found empirically

to coincide with 97.5% accuracy. This point could be determined, byinter-

polation if necessary, from the theoretical function best describing therela-

tionship between target stimulus duration and the accuracy of responding.

Vickerset al. (1972) argued that, although this function should be linear and

described by 0.5(1 + f), wheref is the ratio of target exposure durationto IT,

sources of random error would produce a negatively accelerated function

conforming to the top half of a cumulative normaldistribution with a mean

of zero (i.e., zero duration at 50% accuracy).

Subsequent experiments to test assumptions underlying the measurement

of IT suggested that these assumptions werejustified. Thus, response accu-

racy as a function of target exposure conformedclosely to the theoretical

normal ogive, as shownin Figure 1 (Lally & Nettelbeck, 1977; Vickerset al.,

1972). Repeated measures of IT found little difference (mean ) approxi-

mately 100 ms on each occasion), with a correlation of 0.8 between measures

(Vickerset al., 1972). Estimates of noise from the samesubjects ranged from

0.26° to 0.48° with a mean of 0.30°, clearly of the order expected on the pro-

posed rationale (Nettelbeck, 1972, 1973b; Vickers et al., 1972). Although

Nettelbeck (1972) also found that noise measures could be more than dou-

bled to 0.66° by stress (occasioned by the expectation of electric shock), this

did not appear to pose difficulties for the procedure, since subsequent mea-

sures of \ with a stimulus difference equivalent to 1.6° (i.e., twice as large as

the difference employedby Vickerset al.) were not discernibly different from

initial estimates (Nettelbeck & Lally, 1976; Lally & Nettelbeck, 1977).

3.2 Procedure

A variety of discrimination tasks involving different stimuli in different mo-

dalities, and following various masking procedures, with different means of

presentation, number of trials, accuracy criteria, and forms of response,

have been used to measure IT (Brand & Deary, 1982; Nettelbeck, 1982,

 
3The symbolof ) is reserved throughout for estimates of IT defined in terms of 97.5% accu-

racy. At otherlevels of accuracy the term SOAis used. This distinction makesit clear when direct

comparisons can be made between different measures of IT using the common metric }.
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FIGURE 1. Probability of a correct response as a function of stimulus exposure dura-

tion. (After Vickerset al., 1972, Figure 9a).

1985a). Alternative versions have, for example, required discrimination be-

tween two or morelights, or lines in different locations, identifying the tem-

poral order of two tones or twovibrators,or the relative pitch of two tones,

or the recognition of various symbols and alphabet characters. There will be

further discussion about these alternatives in sections to follow. The most

frequently used task has required discrimination between twolines of differ-

ent length, as describedin the previoussection. Typically, the difference be-

tween these lines has been between 0.8° and 1.6°, with the target exposed

continually up to the time of mask onset and employing a pattern mask to

limit exposure. Figure 2 illustrates a form of this task, used commonly by

Nettelbeck and others in Adelaide, and hereafter referred to as the “2-lines”

version.

This procedureresults in “central” masking, as defined by Turvey (1973).

Turvey demonstrated two kinds of masking, the effect occurring either pe-

ripherally (not capable of binocular integration) or centrally (binocular inte-

gration), depending on the form of the mask andthe relative intensities of

target and masking figures. Althoughthere is controversy about whether two

separate processes are involved, as opposed to the same process in different

conditions (Felsten & Wasserman, 1980), the demonstration of two types of
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FIGURE 2. The 2-lines discrimination task for measuring inspection time:(a) targetfig-

ure; (b) maskingfigure.

masking can pose a problem for interpreting results obtained by different

procedures from subjects differing in age or ability, unless locus of masking

is known to be the same.

To date, two studies have defined locus of masking in the IT task.

Nettelbeck, Hirons, and Wilson (1984, Experiment1) used a dichoptic proce-

dure with a 2-lines task to present target and mask to separate eyes, so that

masking could only occurcentrally. Individual measures of \ from the same

six mildly mentally retarded and six nonretarded adult subjects remained

essentially the same as when made with the usual binocular procedure.

Nettelbeck and Wilson (1985, Study 1) have confirmed this finding for two

samples of 10 normal children aged about 8 and 12 yearsrespectively, com-

pared with 10 university undergraduates. Not only were within-group mea-

sures of IT essentially the same for binocular and dichoptic conditions but

the same outcome was obtained whena variable interval was introduced be-

tween target offset and mask onset(ISI), within both binocular and dichoptic

conditions. These manipulations confirmed constant SOA fora givenlevel

of accuracy, irrespective of target duration, and therefore conformed to

Turvey’s “additive rule” (Turvey, 1973, Experiment V), established by him as

a functional test for central masking. Nettelbecket al. (1984, Experiment2)

also obtained results consistent with the additive rule for eight mildly re-

tarded and six nonretarded young adults, but using a different task requiring

a judgment about which of twolights in different positions was turned on

momentarily before backward masking by a bankoflights. (This procedure
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was devised by Smith, 1978, and is referred to here as the “2-lights”task).
Thus, it can reasonably be assumedthat,at least for the 2-lines and 2-lights

tasksas used in Adelaide, the masking effect is equivalent across a wide range
of MA and IQ.

Although procedural details have been different, virtually all investiga-

tions have used someversion of one of two basic psychophysical procedures

to vary target duration. The methodofconstant stimuli (MCS)incorporates

a fixed numberoftrials at each of several specific target exposure durations

(i.e., SOAs), selected from within a wide range whichincludes the expected

level of IT. Most commonly, different target durations are presented within a

quasi-random sequence, but, even when target durations are constant within

blocksof trials, markedly similar results may be obtained, at least for mildly

retarded and nonretarded adults (Nettelbeck, Kirby, Haymes, & Bills, 1980).

Different versions of the method of limits have been applied, with thosein-

vestigators who have access to computer-controlled technology preferring

some form of the adaptive staircase version. Under this method,testing be-

gins at a long SOA, and subsequent exposuresare reduced or lengthened as

required, each change being determined by the accuracy of responding at a

given SOA.Theaim is to determine SOAcoincident with a specified level of

accuracy. Typically, the staircase method results, within a small number of

trials, in a level of accuracy close to that required. Thosetrials that then fol-

low involve judgments that “home in” on the SOAfinally determinedas re-

flecting IT. This method therefore has the advantage of controlling for indi-

vidual differences in the extent of practice required before achieving a

specified level of accuracy, an important consideration when comparingdif-

ferent age or ability groups. The version used in Adelaide, and the one for

which mostreliability data are available (see Section 5.1) was derived from

the algorithm termed “Parameter Estimation by Sequential Testing” (PEST),

developed by Taylor and Creelman (1967). However, the adaptive methods

used by others are similar (e.g., Irwin, 1984; Mackenzie & Bingham, 1985).

4. INSPECTION TIME(IT) AND IQ

Research on this topic is summarized in Tables 1, 2, and 3 according to

whethera verbalability test was used (Table 1), or some combination of the

Performance subscales from the Wechsler Adult Intelligence Scale (WAIS)

(Table 2), or a test of general intelligence (Table 3). This scheme follows

Muniz and Lubin (1985), but extends their presentation by including addi-

tional research, together with data from somestudies that are not available

from the published versions of those studies. Further, a commonestimate of

IT Q) has been employed throughout, thereby permitting the direct compari-
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son of different results.4 Those studies that have reported WAIS Verbal IQ

(VIQ) and Performance IQ (PIQ) separately from Full Scale IQ (FSIQ)are to

be foundin all three tables. However, the tables are not comprehensive and

some studies considered below havenot been included,either because insuf-

ficient details were available or because details were too complex to be sum-

marized in this way.

4.1 IT and Verbal Ability

Nettelbeck and Lally’s (1976) finding of a strong correlation between IT and

WAIS-PIQ but not VIQ suggested that some basic limitation in rate of per-

ceptual sampling might particularly influence outcomein tasks, like the PIQ

subtests, where time limits apply and which involvevisual organization and

integration. Evidence that masking in the IT task interrupts somecentral de-

cision network (Section 3.2) suggested that the limitation was centrally lo-

cated. This conclusion was supported bythe reported correlation between IQ

and an alternative version of the IT measure for auditory discrimination

(Brand & Deary, 1982). Thus, if similar results were obtainable in more than

one modality, IT must involve more than just peripheral visual limitations.

The notion of somecentral limitation that is not general, but applies only

in situations under specific time constraints, does not accord with Brand’s

theory (Section 2) that IT reflects general intellectual capacity. Instead,

Brand argued that IT should be found to correlate with tests loading on g,

including tests of verbal abilities which, although obviously reflecting educa-

tion and culture to some extent, are also knownto load strongly on the g fac-

tor. Brand and Deary (1982) advanced evidence in supportof this position.

The variousresults shownin Table | do notresolve this issue. Among those

from adult subjects, two are questionable because of small samples that have

included mentally retarded persons together with subjects of high ability

(Deary, 1980; Nettelbeck & Lally, 1976). Such combinations were queried by

Mackintosh (1981), and have since been demonstratedto inflate correlation,

individuals with IQ lower than about one standard deviation (SD) below av-

erage performing too differently in timed tasks to be regarded as being from

the same population as average to above-average subjects (Nettelbeck &

Kirby, 1983a,b).

 

4It is possible to compare different absolute measures of SOA obtained from different levels

of accuracy directly, if it is assumed that the function relating response accuracy to SOA con-

formsto the top half of a cumulative normal ogive that passes through zero duration at 50%ac-

curacy. Asoutlined in Section 3.1, this assumptionis justified. Thus, \ (SOA at 97.5% accuracy)

can be calculated from any other SOA(sayat 85%accuracy) by multiplying the latter by the ratio

of Z scores defining the 97.5 and 85th percentiles under the normal curve;in this case 1.96 + 1.04

= 1.88, so that \ = SOA at 85% accuracy x 1.88.



TABLE1
IT( \ ) and Verbal Ability
 

 

 

Age Psychophysical

Author Subjects (years) n Task procedure

Nettelbeck & Lally> University students 16-22 10 1. 2-lines* MCS
(1976) and retarded adults 2. 2-lines MCS

Hartnoll (1978)¢ School children 11-12 18 1. Animalnames Methodoflimits

(visual) (ascending)

2. Animal pictures Methodoflimits

(ascending)

Grieve (1979) Adults 16-28 10 2-lines adaptive/MCS

Deary (1980) Retarded and 17-25 17 1. 2-lines adaptive/MCS

nonretarded adults 2. 2-tones adaptive/MCS

Nettelbeck (1982) University students 19-48 45 2-lights PEST

Sharp (1982) Adolescents and 15-36 12 2-lines adaptive/MCS

adults

Hulme & Turnbull School children 6-7 65 2-lines MCS

(1983)

Smith & Stanley School children 12-13 107 2-lines MCS

(1983)

Vernon (1983) University students 18-34 50 2-lines adaptive

Irwin (1984) School children 11-13 47 1. 2-alphabet adaptive

characters

(visual)

2. 2-tones adaptive

Nettelbeck (1985c) Nonretarded adults 17-40 1.43 2-lines MCS

2. 40 2-lines PEST

Mackenzie & University students 18-48 1.16" 2-lines! adaptive

Bingham (1985) 2.13

Notes:

4Published results have been converted where necessary to Xd (i.e. SOA at 97.5% accuracy;

see Footnote 4). Weights applied are Hartnoll, Grieve, 1.19; Deary (1.) 1.53; Sharp, 1.19; Hulme &

Turnbull, 1.53; Vernon, 1.19; Irwin, 3.56; Mackenzie & Bingham,3.56.

>A further breakdownis shownin Nettlebeck (1982, Appendix 1).

“Vertical lines as in Figure 2 unless stated otherwise.

dReported by Brand & Deary (1982, Table 1).

©Australian Council for Educational Research.

Brief form; Dr. C. Hulme, personal communication, December, 1985, February, 1986.

&§Correlations between IT and verbal ability tests.

hi. Strategy users; 2. Strategy non-users.

Horizontal lines, screen placementvaried.
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Mean, (SD), range Mean, (SD), Correlation p

 

d (ms)* Test range, IQ IT-IQ (one-tailed)

— 98-554. WAIS VIQ 82, (22), 49-124 1. —.32 n.s.

= 100-804 — .41 N.S.

— 48-131 Vocabulary “normal” 1. — .54 <.05

+ verbal reasoning

+ verbal fluency

— 36-83 2. +.20 n.s

99, (24) 71-143 Mill Hill Vocabulary 101, (15), 81-125 — 88 <.01

— 31-1071 Mill Hill Vocabulary 98, (21), 59-135 1. — .69 <.01

— 6-160 2. — .66 <.01

98,(-—) 50-173 Verbal reasoning‘ 127, (—), 104-135 — .34 <.05

(ACER-AL)

45, (12) 30-71 AH4 Vocabulary “normal” — .69 <.01

164, (30) 107-268 WISC-R VIQ! 116, (18), 75-152 — .08 n.s

104,(88) 12-460 1. Reading (See table 3)® 1. +.04 n.s
comprehension

2. Vocabulary 2. +.12 n.s

127, (30) 61-224 WAIS-VIQ 122, (9), 103-137 + .02 n.s

646, (422) — Mill Hill Vocabulary 99, (11) 1. —.09 n.s

696, (641) ~ 2. — .32 <.01

80,(52) 37-336 WAIS-R VIQ 117, (14), 87-142 1. — .34 <.05

83, (44) 41-259 116, (14), 87-142 2. — .38 <.01

236, (41) — WAIS VIQ 118, (9) 1. + .06 N.S.

288, (48) = 117, 9) 2. —.18 n.s.
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Grieve (1979) and Sharp (1982) strongly support the hypothesis of an

IT-verbal ability correlation, although Grieve’s result is due entirely to six

subjects in the IQ 81-105 range (reported by Brand & Deary, 1982, Table 1),

so that sampling error is a possibility. Three sets of results from Nettelbeck

(1982, 1985c) also support this hypothesis, although the formerstudy did use

a verbal reasoningtest to which timeconstraints apply. However,the similar-

ity of outcomefor three separate measuresof IT, with samples of 40 or more

for both thelines and lights tasks and with different psychophysical proce-

dures, does provide reliability for these results, the mean r from which is

— .35.5 However, Vernon (1983) and Mackenzie and Bingham (1985) have

found no evidence of correlation between IT and WAIS-VIQ. Vernon’s

method does not appear to be distinguishable from others employing the

same procedure (see also Nettelbeck, 1982, Appendix 1). Although his

sample had well above average IQ scores, this was equally the case for

Nettelbeck’s 1982 study. Mackenzie and Bingham’sresult is not necessarily as

critical to the hypothesis as Vernon’s, however. The outcome amongtheir

subjects, using a detection strategy based on apparent movement(i.e., group

1 in Table 1), should be discounted, since this group has introduced a cogni-

tive variable not systematically operative in other studies. The possible influ-

ence of strategies on IT will be discussed in Section 5.7, but it should be noted

here that the effect of this particular apparent movementstrategy would be to

reduce correlation (Egan, 1985). With respect to Mackenzie and Bingham’s

group 2, measures of \ calculated from their data are substantially longer

than is typically found for nonretarded adults in a 2-lines task (refer to Tables

1,2, 3, and Nettelbeck, 1982, Appendix 1). This outcome mayreflect therel-

ative difficulty of their task, which involved two horizontallines presented in

different and unpredictable screen locations, so that individual differences in

visual scanning could have influenced the accuracy of performance.

A recent study by Cooper, Cumberland, and Downing, notincluded in Ta-

ble 1, should also be considered here. (Details have been provided by N. J.

Mackintosh, personal communication August, 1985; see also Brand, 1984,p.

59). Cooperet al., found acorrelation of — .17 between IT for 2-lines and vo-

cabulary scores among 45 secondary school students aged 15 and 16 years,

whose IQ ranged from 91 to 128. (IQ was measured by the Cattell Culture

Fair Test, but has here been converted to the WAIS equivalent). Including

this outcome with the other seven sets of results for adult subjects (Grieve,

1979; Sharp, 1982; Mackenzie & Bingham, 1985; Nettelbeck, 1982, 1985c,

two sets; Vernon, 1983), the mean correlation between IT andverbalability is

— .29; the median value is — .34.

 
5Wherever meancorrelations have been calculated from samplesof different size, coefficients

have been transformedto Fisher’s z and weighted according to the degrees of freedom for each

sample before averaging, as described by Guilford (1965, pp. 348-349).
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Amongtheinvestigations involving children, Hartnoll (1978, reported by

Brand & Deary, 1982) provides strong support for the hypothesis of a corre-

lation between IT and verbal ability in one condition but not in the other.

Further, since this task involved identifying animal namesandpictures, the

outcome is also consistent with a word-knowledge explanation. Sen and

Goswami (1983) have also reported correlations of — .56 and —.48 (age

partialled out) between two versions of IT and a Hinditranslation of the

Peabody Picture Vocabulary Test (PPVT) among 48 Indian schoolchildren

aged 6 to 11 years. However,since this study did not employ a masking proce-

dure to limit processing subsequent to target exposure, MA differences in

cognitive strategies cannot be excluded. Support from Irwin (1984) is equivo-

cal, although the results from this study should also be viewed with caution.

Irwin’s visual task required distinguishing between dot-matrix versionsof a

lower case o and an umlautedii; since means and SDsfor) in this study were

inordinately large and measurementdistributions markedly skewed,it is pos-

sible that someparticipants did not understand whatwas required.Similarly,

results for the auditory task suggest that some subjects encountered consider-

able difficulty in making the discrimination, although results here favoured

some association between IT and verbalability.

Althoughthe remaining two studies in Table 1 (Hulme & Turnbull, 1983;

Smith & Stanley, 1983) found nocorrelation between IT andverbalability,

these results are consistent with an IT-MAassociation. Both studies fol-

lowedsimilar procedures, so that comparisonis justified. Mean \ amongthe

youngerchildren (Hulme & Turnbull) is significantly longer (z = 4.72); fur-

thermore, reanalysis of Smith and Stanley’s IT data has foundsignificantly

slower \ among 12- than 13-year-olds (p < .01).® Direct evidence that IT be-

comes faster with ontogenetic development, at least until 11 to 13 years of

age, is provided bya series of investigations by Wilson (1984). The major

study (which appears in the dissertation as Experiments 2.1 and 2.2) em-

ployed a cross-sectional design to compare IT amongchildren aged 6 to 12

years and adults, together with a longitudinal follow-up on most children, so

as to distinguish maturation effects on IT from effects due to cohort and

practice. Longitudinal changeafter 1 year could not be explained as resulting

from practice, and cross-sequential analyses established that IT became

shorter with increasing age, independently of cohort. The correlation be-

tween IT and MA (PPVT)duringthefirst year of the study was — .43 (n =

70),’ aresult comparableto Scallon’s test with a similar sample (reported by

Brand, 1984, p. 60). Since MA and chronological age (CA) were confounded

in these studies, Wilson (1984, Experiment 6) made a second experiment,

 

61 am grateful to Dr. Glen Smith for providing me with the IT data from this study.

7A published account of this study is to be found in Nettelbeck & Wilson (1985, Study 3).

However, this does not include correlations between IT and ability measures.
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comparing children at different IQ levels (Raven Coloured Progressive Mat-
rices) while controlling for MA. IT was measured for two MA groups(8 and
11 years), each consisting of below-average but nonretarded (IQ 80-90), av-
erage (IQ 95-114), and above-average (IQ 122-135) subsets (n = 8). Consist-
ent with other experimentsin her thesis, Wilson found significantly slower IT
in the MA-8 groupbut, within MAgroups,IT did notcorrelate significantly
with IQ. This finding indicates that, if retarded personsare excluded, then,
until adult levels of performanceare reached, it is MA that correlates with
IT. The general developmental trend discernible from Wilson’s experiments
is shownin Figure 3. The hypothetical extension ofthis curve prior to age 6is
supported by Hosie’s (1979) measure of IT for 4-year-olds (see Table 3, be-
low) and by Lasky andSpiro’s (1980) assessment of processing speedin in-
fants aged 5 months, using a backward masking procedure. The forward
extension of the function to old age reflects results from Nettelbeck (un-
published, reported by Nettelbeck, 1985a) and Wenger (1975-78). Briefly,
this work has founda significant increase in IT beyond 50 years of age, but
with a more markedincrease beyond age 60, and with IT among persons
more than 70 years about 90%longer than measures among young adults.

Wilson’s results are broadly consistent with Brand’s theory, pointing to a
change with maturation in somecentral processing mechanism. Similarly,
Nettelbeck’s (1982, .1985c) finding of moderate correlations between IT and
verbal ability support the notion of somerelationship between IT and g.
However, Brand’s theoryalso predicts individual differences in IT with wide
ability differences within a given age cohort during childhood, with such dif-
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ferences more pronounced at younger MAs,particularly where the ability

test loads on g,. Although the VIQ scales employed by Hulme and Turnbull

(1983) would be expected to load more on g., and their sample combined 6-

and 7-year-olds without age comparisons, this study does appearto havein-

cluded an adequate sample-size and a sufficiently wide IQ range to provide

somekindoftest of this prediction. However, mean VIQ (Table 1) confirms

that the sample had unusually high average ability,® so that ceiling effects in

IT were a possibility. Therefore, that these results do not support Brand’s

theory is not necessarily critical to his position.

In summary, the question of an IT-verbal ability correlation remains

unresolved, with some evidence consistent with this proposal but some not.

Future researchers should note, however, that the wide variety of tasks and

procedures adopted by various investigators makesinterpretation of studies

to date a risky business. There is a need for agreement on commonwaysfor

measuring IT if comparable research findings are to accumulate.

4.2 IT and PIQ

As shownin Table 2,a statistically significant IT-PIQ correlation has been

foundin all studies except two (Smith & Stanley, 1983; Vernon, 1983). The

low correlation found by Mackenzie and Bingham (1985) among subjects

using a detection stragegy based on apparent movement(1.e., group 1 in Ta-

ble 2) should be discounted for the reasons already discussed in Section 4.1.

Similarly, results from Nettelbeck and Lally (1976), who employed a mixed

retarded and nonretarded sample, should be removed from consideration.

A possible explanation for the near-zero correlations found by Smith and

Stanley lies in the fact that their subjects were not practiced in the task be-

forehand (Smith & Stanley, 1983, p. 361), which could result in a degree of

unreliability. This suggestion is supported by the large SDs shownin Tables 2

and 3, these values being about twice what has commonly been found with a

mean of this order (Nettelbeck, 1982, Appendix 1). Dr. Smith has also con-

firmed (personal communication, January, 1986) that about 17%ofall cases

tested were lost because goodness-of-fit between data and the theoretical

function (described in section 3.1) was unsatisfactory. However, even among

the remaining studies in Table 2, the range of correlationsis still wide; from

— .24to —.71 for retarded adults, and from +.15 to — .72 for nonretarded

adults and children. The means from these instances providethe only esti-

mate available concerning the strength of the IT-PIQ association; for

nonretarded and retarded subjects separately, the means are — .33 and — .45,

respectively. Thus, the IT-PIQ relationship appearsto be stronger amongre-

tarded samples, as has been noted previously (Brand & Deary, 1982; Hulme

 
8] am grateful to Dr. M. Anderson for drawing this to my attention.
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TABLE 2

IT(\) and PIQ

Age Psychophysical
Author Subjects (years) n Task procedure

Nettelbeck & Lally University students 16-22 10 1. 2-lines° MCS
(1976) and retarded adults 2. 2-lines MCS

Lally & Nettelbeck? 1. University students 17-24 16 2-lines MCS
(1977) 2. Nonretarded adults 17-22 16 2-lines MCS

3. Retarded adults - 17-26 16 2-lines MCS

Nettelbeck, Cheshire Retarded adults 18-30 14 2-lines MCS
& Lally (1979)

Lally & Nettelbeck Retarded adults 17-25 20 1. 2-lines MCS
(1980) 2. 2-lines MCS

Hulme & Turnbull School children 6-7 65 2-lines MCS
(1983) Retarded adults 22-44 8 2-lines MCS

Smith & Stanley School children 12 58 2-lines MCS
(1983)

Vernon (1983) University students 18-34 50 2-lines adaptive

Nettelbeck (1985c) Nonretarded adults 17-40 1. 43 2-lines MCS

2. 40 2-lines PEST

Mackenzie & University students 18-48 1.168 2-lines® adaptive
Bingham (1985) 2. 13 2-lines adaptive

Notes:

“Published results have been converted where necessary to }. Weights applied are
Hulme & Turnbull, 1.53; Vernon, 1.19; Mackenzie & Bingham,3.56.

>A further breakdownis shown in Nettelbeck (1982, Appendix 1).

“Vertical lines as in Figure 2 unless stated otherwise.

“The overall correlation with three groups combined was — .80; for combined nonretarded
groups it was — .25; results are as reanalysed by Nettelbeck & Kirby (1983a).

“Brief form; Dr. C. Hulme, personal communication, December, 1985, February, 1986.
‘Correlations between IT and WISC-Rsubtests shown.
1. Strategy users; 2. Strategy nonusers.

hHorizontal lines, screen placement varied.

& Turnbull, 1983). Although the high — .72 from Mackenzie and Bingham
(1985) should be treated cautiously, bearing in mindthe natureoftheirtask,
as discussed in Section 3, the sample is small and including this result makes
little difference to the mean.

4.3 IT and GeneralIntelligence

Problems for the interpretation of results from Smith and Stanley (1983)
and Irwin (1984), as discussed in Sections 4.1 and 4.2, are equally applicable
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Mean, (SD), range Mean, (SD), Correlation p

d (ms)? Test range, IQ IT-IQ (one-tailed)

— 98-554 WAITS PIQ 86, (22), 51-123 1. —.92 <.01

— 100-804 2. — .89 <.01

93, (43), 49-174 WAIS PIQ 120, (6), 116-130 — 17 n.s.

90, (42), 40-189 WAIS PIQ 106, (6), 90-115 — .54 <.05

207, (47), 94-284 WAIS PIQ 69, (7), 57-81 — 45 <.05

210, (70), 90-392 WAIS PIQ 75, (10), 60-95 — .24 n.s.

264, (63), 171-378 WAIS PIQ 69, (8), 51-83 1. —.41 <.05

225, (55), 146-371 2. —.51 <.05

164, (30), 107-268 WISC-R PIQ* 114, (18), 86-155 — .29 <.05

283, (119), 122-536 WAITS PIQ* 64, (13), 41-86 —.71 <.05

126, (103), 16-460 PC (WISC-R) (see table 3)! .00 n.s.

BD (WISC-R) + .18 n.s.

Mazes (WISC-R) + .17 n.s.

127, (30), 61-224 WAIS-PIQ 118, (12), 97-146 + .15 n.s.

80, (52), 37-336 WAIS-R PIQ 114, (15), 77-138 1. —.49 <.01

83, (44), 41-259 114, (15), 77-138 2. —.55 <.01

236, (41) — WAIS PIQ 114, (9) 1. —.20 n.s.

288, (48) — 109, (10) 2. —.72 <.01
 

here, and IT-IQ correlations from these studies have therefore not been con-

sidered in the analyses that follow. These omissions leave only two studies

involving children (Hosie, 1979; Hulme & Turnbull, 1983), one finding a

high correlation from a small sample and the other a low correlation in a

large sample. Clearly, a study involving adequate samples from different co-

horts, with each cohort representing a normaldistribution of IQ,is required

to resolve this discrepancy.

Table 3 contains 17 sets of results from nonretarded adults, disregarding

Mackenzie and Bingham’s strategy users for the reason given in Sections 3.1

and 4.1, and three studies in which nonretarded and retarded subjects have

been mixed (Anderson, 1977; Deary, 1980; Nettelbeck & Lally, 1976). Seven

other sets of results can be considered; a correlation of — .44 between Cattell

Culture Fair IQ and IT measured for 2-lines, from a sample of 45 secondary

school students aged 15 and 16 years (Cooperet al., reported by N. J. Mack-

intosh, personal communication August, 1985); a correlation of — .31 be-

tween Raven Advanced Progressive Matrices and IT measured for 2-lines,



TABLE3
IT(\ ) and Measuresof GeneralIntelligence

 

 

Age Psychophysical
Author Subjects (years) n Task procedure

Nettelbeck & University students 16-22 10 1. 2-lines® MCS
Lally (1976) andretarded adults 2. 2-lines MCS

Nettelbeck University students 17-28 40 2-lines MCS
(1973b)°

Anderson Retarded and 16-26 1.13 2-lines adaptive/MCS
(1977) nonretarded adults

2.12 3-lines adaptive/MCS

3.12 4-lines adaptive/MCS

Grieve (1979) Nonretarded adults 16-28 10 2-lines adaptive/MCS

Hosie (1979) Nursery infants 4 12 2-lines methodof limits

(colored) (descending)

Deary (1980) Retarded and 17-25 17 1. 2-lines adaptive/MCS
nonretarded adults

2. 2-tones adaptive/MCS

Nettelbeck University students 19-48 46 2-lights PEST
(1982)

Hulme & School children 6-7 65 2-lines MCS

Turnbull

(1983)

Nettelbeck & 1. University students (mean = 24, 59 1. 2-lights PEST

Kirby (SD = 7)

(1983a) 2. 2-vibrators PEST

2. Trade apprentices (mean = 18, 82 1. 2-lights PEST

SD = 2) 2. 2-vibrators PEST

3. Retarded adults (mean = 21, 41 1. 2-lights PEST

SD = 3) 2. 2-vibrators PEST

Vernon (1983) University students 18-34 50 2-lines adaptive

Smith & School children 12-13 107 2-lines MCS

Stanley

(1983)

Irwin (1984, School children 11-13 48 1. 2-alphabet adaptive

Exp. I) characters

(visual)

2. 2-tones adaptive

Irwin (1984, School children 11-13 25 2-alphabet adaptive

Exp.II) characters

(visual)
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Mean, (SD), range Mean, (SD), Correlation p

 

d (ms)? Test range, IQ IT-IQ (one-tailed)

= 98-554 WAIS FSIQ 83, (22), 47-119 — .70 <.05

— 100-804 — .63 <.05

101, (22), 74-156 Verbal & number 125, (—), 112-135 — .13 N.S.

reasoning

(ACER-AL/AQ)?

— 18-262 Cattell Culture 94, (20), 44-121 — .87 <.01

Fair‘ or

— 83-238 Stanford-Binet 98, (14), 69-121 — .78 <.01

— 107-214 — .66 <.01

99, (24) 71-143 Cattell Culture Fair® 103, (7), 91-114 — 61 < .05

1020, (166), 510-1530 Coloured Progressive 102, (33), 95-125 — .78 <.01

Matrices

— 31-1071 Standard Progressive 100, (24), 55-125 — .72 <.01

Matrices

— 6-160 — .70 <.01

98,(—), 50-173 Advanced Progressive 127, (—), 116-132 — .20 n.s

Matrices!

164, (30), 107-268 WISC-R FSIQ® 117, (17), 89-150 — .20 n.s

89, (26), 47-167 Advanced Progressive 124, (7), 109-136 — .23 n.s

Matrices‘

115, (34) 56-184 —.17 n.s.

102, (30), 55-186 Standard Progressive 109, (10), 85-129 — .23 <.05

152, (56), 68-416 Matrices — .22 <.05

185, (133), 43-714 WAIS 68, (10), 43-82 — .26 <.05

396, (199), 150-921 FSIQ — .27 <.05

127, (30), 61-224 WAIS FSIQ 121, (9), 100-142 +.10 n.s

104, (88), 12-460 Cattell Culture-Fair£ 101, (11), 74-126 —.12 n.s

646, (422) Standard Progressive 100, (14) — .27 <.05

Matrices

696, (641) — 23 <.05

1. 606, (263) Standard Progressive 97, (8) — .06 n.s.

2. 398, (154) Matrices + .04 n.s.

(Continued)
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TABLE3 (Continued)

Age Psychophysical
Author Subjects (years) n Task procedure

Irwin (1984, Students 17-52 27 2-lines adaptive

Exp.III)

Edwards (1984) Nonretarded adults 20-40 30 1. 2-lines PEST

30 2.2-lights PEST

29 3. 2-tones PEST

30 4. 2-vibrators PEST

Sharp (1984) Secondary students 14-16 24 2-lines adaptive

Nettelbeck Nonretarded adults 17-40 43 1. 2-lines MCS

(1985c) 40 2. 2-lines PEST

Mackenzie & University students 18-48 1.165 2-lines! adaptive

Bingham 2.13 2-lines adaptive

(1985)

Notes:

“Published results have been converted where necessary to \. Weights applied are Anderson,

Grieve, 1.19; Hosie, 2.55; Deary,(1.) 1.53; Hulme& Turnbull, 1.53; Vernon, 1.19; Irwin (Expts. I & ID),

3.56; Irwin (Expt. III), 3.21; Mackenzie & Bingham,3.56.

Vertical lines as in Figure 2 unless stated otherwise.

“Reported by Nettelbeck (1982).

dAustralian Council for Educational Research.

“The Cattell test has a mean of 100 and SD of 24; not known whether values shown have been

converted to WAIS equivalents.

‘Estimated from APM scores by convertingto z after estimating normative sample SD from Tables

APMXII and APMXIV, ACER manual for APM.

®Brief form; Dr. C. Hulmes, personal communication, December, 1985, Feburary, 1986.

hy, Strategy users; 2. Strategy nonusers.

"Horizontal lines, screen placementvaried.

from a sample of 25 university students (Jensen, 1982, p. 120);° biserial cor-

relations of — .49 and — .41 between Cattell Culture Fair scores (IQs either

around 132 or 98)!° and two measures of recognition threshold (c.f. IT) for

2-tones, from 20 university students (Razet al., 1983, ExperimentII); corre-

lations of — .48 and — 51 between scores on the Armed Forces Qualification

Test (IQs either around 115 or 90) and IT measured for 2-tones and2-lines,

respectively, from the same sample of U.S. Navy servicemen (n = 20 and 22,

respectively), (Brand, 1984 pp. 58-59); a correlation of — .44 between IT and

IQ (Cattell Culture-Fair, adjusted to WAIS equivalents, 81 to 125, mean =
 

°Enquiries to Dr. P. A. Vernon (personal communication, July, 1985) have confirmed that

these subjects were not included in Vernon (1983).

107Qs measured with the Cattell test, which has a mean of 100 and SD of 24, have been ad-

justed to WAISequivalents.
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Mean, (SD), range Mean, (SD), Correlation p

d (ms)? Test range, IQ IT-IQ (one-tailed)

137, (27) Advanced Progressive 120, (8), 97-131 —.17 n.s.

Matrices‘

99, (38), 45-197 Advanced Progressive 121, (8), 102-135 — 41 <.05

78, (31), 34-156 Matrices! — .28 n.s.
117, (116), 11-399 — .38 <.05

153, (66), 36-284 + .02 n.s.

Standard Progressive 103, (12), 86-130 — 54 <.01

Matrices

80, (52), 37-336 WAIS-R FSIQ 117, (14), 81-138 — .40 <.01

83, (44) 41-259 117, (15), 81-138 — .46 <.01

236, (41) WAISFSIQ 118, (9) — .08 n.s.

288, (48) 115, (8) — .52 <.05

 

108, SD = 8) for a symbol-discrimination task, from 81 college students

(Longstreth et al., 1985).!!

Of the 24 available sets of results, 16 are significant, the range of correla-

tions being from +.10to —.61. Acrossall 24 results, the mean correlationis

— .31 and the median — .39. However,as will be made clear in Section 5.3(b),

there are sound groundsforrejecting the three sets obtained with the vibrator

keys and when this is donethe correlation increases to — .34 (median — .41).

There are 12 sets of results for tasks involving lines or symbols, 5 for lights,

and 4 for tones. Average correlations for these subgroups are — .33, —.28,

and —.44, respectively. Further interpretation of these results is left until

after the discussion of reliability and validity in the next section.

5. RELIABILITY AND VALIDITY OF INSPECTIONTIME(IT)

The various IQ tests used in the research summarized in Section 4 are widely

available and,as set out in their respective manuals, have been shown to have

acceptable reliability and to share considerable common variance among
 

117ongstreth et al. (1985) did not actually derive measures of IT, instead employing recogni-

tion accuracy as the dependent variable, so that their reported correlation is positive. However,

their procedure follows the usual IT method, applying MCSandinvolving a backward mask,

andtheir results conform to the typical negatively accelerating function that relates increasing

SOAto increasing accuracy. Thus, their inclusion here in this wayis justified. Average \ among

the 13 high-IQ subjects represented in their Figure 2 is about i5Oms, an outcome compatible with

results for comparable samples in the 2-lines task (refer to Tables 2 and 3), bearing in mind that

Longstreth et al. have analyzed their results for a 3-choice situation.
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themselves and with other similar tests. The present section outlines several

issues reflecting on the reliability of the different procedures and discrimina-

tion tasks used to measure IT. Alternative procedures have already been de-

tailed in Section 3.2, together with a description of the 2-lines task andbrief

accounts of whatis involved in the other tasks that have been applied. Some

of these tasks are described morefully in what follows, because their charac-

teristics are relevantto reliability. First, the equivalence of measures under

different procedures andthe stability of repeated measures with the same

task and procedure is examined. This is followed by a discussion of subject

variables that may, if operative, invalidate the measure obtained. The section

concludes by considering evidence that IT provides an index of mental speed.

5.1 Measuresof Reliability

(a) Different Psychophysical Methods

The MCSwas adopted by Vickerset al. (1972) so as to interpolate \ from the

cumulative normal ogive, and this procedure has been widely applied by

Nettelbeck and coauthors (Nettelbeck, 1982, 1985a). Irwin (1984) hascriti-

cized this work on grounds(a) that ) is interpolated from that position of the

psychometric function in the region of error-free performance, and therefore

poorly defined; and (b) that \ has sometimes been determined by extrapola-

tion beyond the range of target durations actually used in the study. Irwin’s

point is taken for establishing absolute values of IT. Nonetheless, as de-

scribed in previoussections, differences from nonretarded-retarded compar-

isons, and from age comparisons, have generally been sufficiently largeto es-

tablish reliable relative differences between such groups. Furthermore,it can

be shown that measures of \ by MCSandby PESTarevery similar. (PEST

circumvents Irwin’s criticism by directly measuring SOAat a specified level

of accuracy within the steeper portion of the psychometric function, in the

same way as the adaptive procedure favoured by Irwin). Thus, the two

within-subject measures of \ from Nettelbeck (1985c) (see Tables 1, 2 or 3)

had markedly similar distributions and were highly correlated (r = .80). Sim-

ilarly, Nettelbeck and Wilson (1985, Study 2) found that measures from 7-

and 11-year-olds by MCS under two different conditions and by PEST did

not differ significantly. Within-sample correlations between PEST and the

other two measures were moderately strong, with one exception; (7 = .68 and

.22 for 7-year-olds; r = .62 and .88 for 11-year-olds).!2

While these two sets of results counter Irwin’s criticism and suggest also

that PESTis not particularly sensitive to essentially arbitrary specifications

controlling the starting point, tracking rules andexit criteria within the pro-

 

12These correlations were not included in the published version of this study but are to be

found in Wilson (1984, p. 120).
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gram, the PEST procedure is not without its difficulties. Specifically, al-

though performance within groups maintains reasonablerelative stability at

different accuracycriteria, the absolute size of estimates of IT under PEST

can vary with the accuracy level selected. Nettelbeck, Evans, and Kirby

(1982) obtained significantly longer average \ from two measures of SOA

(75% accuracy) than from three estimates employing MCS.Thisresult held

within samples (n = 10) of university students and mildly retarded adults,

eyen though correlations within samples were strong; for students, r ranged

from .36 to .81 (mean = .61); for the retarded sample, r ranged from .65 to

.84 (mean = .79).

Results from Nettelbeck (1985c) and Nettelbeck and Wilson (1985) that

have confirmed close agreement between MCSand PEST(see above) were

obtained for 85%level of accuracy, following Wilson (1984, Appendix 2.1).

This experiment involving 15 university students found significantly longer \

estimated from SOA (75% accuracy) than from SOA (90% accuracy);

(106ms and 84ms, respectively). The result was therefore very similar to

Nettelbeck’s (1982) significant difference between \ = 113 and 83msusing

the same accuracycriteria, despite a correlation between measures of .62,

from 56 university students doing the 2-lights task. However, Wilson alsoes-

tablished \ = 93ms for SOA (85%accuracy), this outcomealso being the av-

erage of the other twosets and therefore confirmingthereliability of this par-

ticular estimate.

Wemayconclude from the foregoing that both MCS and PESTcanresult

in equivalent outcomes, but that adaptive procedures do not necessarily re-

sult in more reliable measures of performance.This point is taken up again in

the section that follows. We may notealso that, whereas a second measureis

usually necessaryto test reliability with an adaptive procedure,split-half reli-

ability is an option under MCS,providing that sufficient trials are taken.

Thus, Nettelbeck (1973b) found r = .78 between twosuchinternal estimates

of IT from 24 university students. Irwin’s (1984, ExperimentIII) adaptive

procedure also permits comparison within a single session, becauseITis esti-

mated by averaging across durations (refer to Table 4).

(b) Test-Retest Reliability

MCSand PESTare equally satisfactory with respect to test-retest correla-
tion, as maybe seen from the variousresults collated in Table 4. Mean ris .76
from instances involving MCS,.71 for PEST, .78 for the three adaptivesets,
and .75 overall. Combining data from repeated measures (including some
shown in Table 4) but irrespective of task or the psychophysical procedure
followed, Nettelbeck (1985a) found that average correlations within adult
nonretarded and retarded samples and within children’s samples at various
ages were about .7. This result held, even after a period of 2 years (Nettelbeck
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TABLE4

Test-retest Correlations for IT, Estimated with Different Discrimination Tasks Using Different Psychophysical Methods

Psychophysical

Author Subjects n Task procedure r Comment

Vickerset al. (1972) University students 10 2-lines MCS 80

Nettelbeck et al. (1982) University students 10 2-lines MCS .56 Mean from 3 measures; range .39 to .81.

University students 10 2-lines PEST 25

Retarded adults 10 2-lines MCS .75_ Mean from 3 measures; range .64 to .84.

Retarded adults 10 2-lines PEST .92

Sen & Goswami(1983) Children 6-11 years 48 2-lines MCS .57 Two conditions involving change to orientation of lines.

Raz et al. (1983) University students 17 2-tones MCS 91 Recognition of “high” or “low”.

Vernon (1983) University students 50 2-lines MCS .80

Irwin (1984, Expt. IT) 12-year-olds 25 2-alphabet adaptive .78

characters

Irwin (1984, Expt. III) Students 27 2-lines” adaptive .87 Split-half.

Nettelbeck et al. (1984, University students 6 2-lines PEST .88 Dichoptic/binocular comparisons.

Expt. 1) Retarded adults 6 2-lines PEST .21. Dichoptic/binocular comparisons.

Nettelbeck et al. (1984, University students 8 2-lights PEST .60 Four ISI conditions; range .38 to .72.

Expt. 2) Retarded adults 8 2-lights PEST .47 Four ISI conditions; range .14 to .90.
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Nettelbeck & McLean

(1984, Expt. 1)

Mackenzie & Bingham

(1985)

Nettelbeck & Wilson

(1985, Study 1)

Nettelbeck & Wilson

(1985, Study 3)

Nettelbeck & Wilson

(1985, Study 3)

Nettelbeck

(unpublished)?*

Longstretchet al. (1985,

June)

University students

Retarded adults

University students

8-year-olds

11-year-olds

University students

7-year-olds

12-year-olds

University students

7-year-olds

8-year-olds

9-year-olds

10-year-olds ©

11-year-olds

University students

78-year-olds

University students

16
16

29

2-lines

2-lines

2-lines

2-lines

2-lines

2-lines

2-lines

2-lines

2-lines

2-lines

2-lines

2-lines

2-lines

2-lines

2 lines

2-lights

3-alphanumeric

symbols

PEST
PEST

adaptive

PEST
PEST
PEST

PEST
PEST

PEST

PEST
PEST
PEST
PEST
PEST
PEST

PEST

MCS

59
59

.66

67
62
.80

87

87
87

38
85
52
74

.90

33

75

Six successive measures; range .29 to .78.

Six successive measures; range .20 to .90.

Horizontallines, screen placementvaried.

Four dichoptic/binocular comparisons; range .55 to .88.

Four dichoptic/binocular comparisons; range .43 to .91.

Four dichoptic/binocular comparisons; range .66 to .94.

Retest after 2 weeks.

Retest after 2 weeks.

Retest after 2 weeks.

Retest after 1 year.

Retest after 1 year.

Retest after 1 year.

Retest after 1 year.

Retest after 1 year.

Retest after 1 year.

Three successive measures; range .21 to .67.

Different numbersoftrials in the two sessions.

 

Note: *Reported by Nettelbeck (1985a).
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& Wilson, 1985). Brand and Deary (1982) have reported that internal

reliabilities of .8 have been typical of IT research at Edinburgh,the higherre-

sult probably reflecting the combination of retarded with nonretarded partic-

ipants in someofthese studies.

As may be seen from Table 4, most repeated measures have involved the

2-lines task, and results do suggest that this provides a highly reliable index of

somebasic attribute. The few examples for other tasks are equally promising

(Irwin, 1984, ExperimentII; Longstreth et al., 1985; Raz et al., 1985), except

for the 2-lights task, where meanr for the twostudiesis .53 (Nettelbecket al.,

1984, Experiment 2; Nettelbeck unpublished, reported by Nettelbeck,

1985a), significantly lower than the mean of .77 for all other tasks (p < .01).

5.2 Subjective Variables

(a) Sensory Sensitivity and Concentration

Involving, as 1t does, very brief stimulus durations, the IT measureis vul-

nerable to diminished sensorysensitivity or to any lapse in concentration just

prior to target onset. This is particularly so if occasional errors are made at

longer durations where the probability of a correct response is high but

where, as Irwin (1984) has stressed, the psychometric curveis least well-

defined. Similarly, Brebner and Cooper (1985) have pointed to hypothetical

instability in the measure, demonstrating that a 17% increasein X is possible

whenonly one additional error in 600 trials is made,if it occurs at a relatively

long target duration.

One way of overcomingthis difficulty is to include occasional long expo-

sures, such that any error could only be caused by inattentiveness, and then

to rescale the psychometric function, assuming that accuracy achieved at

these exposures represents a ceiling, limited by distractibility rather than by

perception. This has been done with data from retarded subjects, after con-

firming the presence of errors associated with poor concentration by record-

ing eye movements (Nettelbeck, Robson, Walwyn, Downing, & Jones,

1986). However, this study found no evidence of lapsed concentration in the

nonretarded sample. It should also be noted that, while revised estimates of

IT amongretarded subjects were shorter, poorly directed gaze in this sample

at the time of target onset was only a minor contributory factor to measures

of IT, which still remained substantially longer than those from nonretarded

subjects. |

To this time,thereis little evidence available on the influence of individual

differences in sensory sensitivity on IT, most studies assumingthatit is suffi-

cient to screen subjects by standardclinical procedures for normalvisual acu-

ity or auditory sensitivity. However, both Deary (1980) and Sharp (1982)

have found a moderate correlation between acuity and IT (— .45 and — .60,

respectively), but without this significantly influencing IT-IQ correlations.
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Further, reduced optical efficiency with aging (Owsley, Sekular, & Siemsen,

1983) may in part be responsible for declining IT performance amongtheeld-

erly. Although Sharp (1984) found a nonsignificant low correlation of only

— .11 between visual acuity and IT, again without influencing the IT-IQ cor-

relation (refer to Table 3), further research on this topic is necessary.

(b) Practice Effects

Evidence on practice effects in IT tasks is available from eight studies, in-

cluded amongthose in Table 4, in which test-retest estimates have been made

under the same conditions. Two studies have found no differences between

two successive estimates (Irwin, 1984, Experiment III; Vickerset al., 1972).

Three have reported improvement. First, Nettelbeck and Wilson (1985,

Study 3) found about 17% reduction among both 7- and 12-year-olds, com-

pared with 12% among university students; in the other two, Mackenzie and

Bingham (1985) have reported 31% reduction for university students, and

Irwin (1984, ExperimentII) has reported 34%for 12-year-olds, but the larger

reductions in these probably reflect the relative difficulty of their discrimina-

tion tasks, as already pointed out in Sections 3.1 and 4.1. Three successive

measures have reduced \ by 30% among university students, compared with

24%in retarded adults (Nettelbeck et al., 1982) and 23%in elderly subjects

(Nettelbeck, unpublished, reported by Nettelbeck, 1985a). Six successive

measures have resulted in 30% reduction among both nonretarded andre-

tarded adults (Nettelbeck & McLean, 1984, Experiment1), with some indica-

tion of asymptotic performancein both groupsbyat least the fourth session.

Even after this degree of practice the measures of \ within both groupsre-

mained substantially correlated. A reasonable inferenceat this time is that IT

shows somesensitivity to initial practice, so that future research should con-

sider longer periods of preliminary training to achieve measures of optimum

performance. Nevertheless, although further work is required on this issue,

weare justified in concluding that IT as measuredsofaris a relatively stable

index of individual differences in time to make discriminative judgments,

since relative improvementis approximately the samefor groupsofmarkedly

different ages and intellectual abilities, with successive measures demon-

strating good within-groupstability.

(c) ResponseStrategies

Experimenters have previously been aware from subjects’ reports that some
subjects are able to achieve unusually high levels of accuracyat very brieftar-

get durations, by using subtle post-masking cuesin the display whichgiverise

to apparent movement or changesin brightness (Brand, 1984; Nettelbeck,

1982). With such subjects, then, the masking procedure sometimesfails to
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limit sensory input to the target exposures programmed, although underthe

usual methods followed there is no way of definitely ascertaining whenthis

has occurred. Obviously, however, these instances introduce unspecified

unreliability into IT measurement.

Mackenzie and Bingham (1985) have investigated the extent to which such

strategies are employed, by questioning subjects after a test session about

how they madethe discriminations required. As shown in Tables 1 to 3,

Mackenzie and Bingham foundthat 16 of their sample of 29 university stu-

dents developed the strategy spontaneously, mean IT for this subsample be-

ing significantly shorter than among the 13 nonusers. Nosignificant IQ dif-

ferences were found between the two subsamples, however. Brebner and

Cooper(1985) have essentially replicated these findings with a similar sample

of university students, although this study did not measure IQ. However, 9

out of 16 of their subjects reported using an apparent movementstrategy,

with mean IT beingsignificantly shorter among users.

Mackenzie and Bingham also attempted to instruct those subjects not ini-

tially employing the strategy to do so in future sessions. This was not effec-

tive, however, there being a significant increase in IT for this groupin theses-

sion when the strategy was employed, and a subsequent decrease when the

strategy was discontinued.

Thus, while an apparent movementstrategy in the 2-lines task is not read-

ily taught, something like 55% of subjects, at least from within university

samples, may spontaneously adoptit, although how soon within a session or

to what extent is not known. The effect of widespread adoptionofthisstrat-

egy would be to reduce any IT-IQ correlation, since IT becomes bunched

around lower values among users. The problem may be overcome, however,

with a discrimination which prevents this strategy, and part of the task de-

vised by Longstrethet al., (1985, June) appearsto dothis. In this study,tar-

get stimuli were a capital O and a diagnonal slash (/), both masked by @, the

conventional symbolfor zero in computer programming. Meancorrect rec-

Ognition scoresacross all SOA intervals were very similar (59 and 64%), and

lower than for two other characters, capital C and U (70 and 84%), although

only U wassignificantly higher. However, this outcomeis consistent with

more effective masking of the first two symbols; while, conceivably, post-

masking cues may improveaccuracyto C and U,this seemslesslikely for the

others.

There is some evidence that individual differences in personality variables

other than IQ can influence IT. Thus, Nettelbeck (1973b) found that, in a

sample of 40 university students, individuals scoring at the extremes of

personality dimensions measured by the Manifest Anxiety Scale and the

Eysenck Personality Inventory had significantly longer IT than those scoring

in intermediate categories. This study did not attempt to link personality var-

lables to differences in response strategy. In a morerecent study, however,
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Brebner and Cooper (1985) have demonstrated the influence of what appear

to be personality-related strategy differences. Brebner and Cooperpredicted

that, because adopting an apparent movementstrategy would require less

stimulus-analysis than attempting a discrimination ofline-length, extraverts

would use this strategy more than introverts. Subjects were 8 extraverts and 8

introverts, all university students. IT was measured in two conditions, one

designed to involve more stimulus-analysis than the other because of longer

delays following a warning signal that prepared the subject for target onset.

Althoughthere was not a general tendency for extraverts to adopt an appar-

ent movementstrategy, Brebner and Cooper found a three-wayinteraction

between the personality variable, strategy use, and condition; the extraverted

strategy users had significantly faster ITs than other subjects underthe con-

dition requiring less sustained attention prior to target onset. In view of the

small samples involved, a replication is desirable. However, this outcomeis

not necessarily inconsistent with that from Nettelbeck (1973b), which did not

permit an independentanalysis of extraversion and neuroticism dimensions.

The possibility also exists that strategies can determine the accumulation

of evidence in the IT task, and so influence outcome, although, as described

in Section 3.1, the task was originally designed to prevent this from happen-

ing. Nonetheless, important differences have been found in the patterns of

RT recorded from retarded and nonretarded adults doing the IT task (Lally

& Nettelbeck, 1977; Nettelbeck et al., 1980). For nonretarded adults, RT to

correct responsestypically becomesfaster with increasing SOA, approaching

asymptote at a durationclose to X, and with overall error RT longer than that

for correct responses. This pattern is predicted by the accumulator model

(Vickerset al., 1972), since evidence for a decision accumulates morequickly

while the target is present than after its offset. Among retarded adults, how-

ever, both correct and incorrect RTs have been foundto be fairly constant

acrossall target durations and therefore suggestive of deadline responding.

Despite this, however, individual psychometric functions of accuracy against

SOA conform to the theoretical normal ogive.

This pattern can be equated with the adoption of low criteria for re-

sponding (Lally & Nettelbeck, 1977), suggesting that retarded subjects take

fewer samples when exposureis limited to make discrimination ambiguous.

At this time, it is not known why somesubjects adopt a deadline response

strategy. This tendency may be linked to MA,since Smith (1985) has found

similar evidence for deadline responding among about 10%of children aged

12-13 years, again without apparent effect on the psychometric function.

Noris it known whethersuch a strategy has any effect on IT.

(d) Adaptation and Noise

Vickers and Smith (1985) have drawnattention to difficulties for the inter-

pretation of IT raised by results from their recent experiments, in which they
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have tested the influence of subjective expectancy and adaptationeffects on
discrimination. These experiments have foundthat, for a situation in which a
subject has control over the numberof inspections madein a discrimination
task before a decisionis reached, the early version of the accumulator model,
described in Section 3.1, can substantially underestimate the actual response
latencies measured. Vickers and Smith infer that this situation arises because
of occasional inspections that make no contribution at all to the decision
process. To understand the implications of this proposal for the interpreta-
tion of IT requires a brief digression into classical psychophysics.
The theory from which the IT measureis derived assumesthat the sensory

magnitudeof the two simultaneously presentedlines in the IT task can be rep-
resented as two normalfrequencydistributions. The meanof each distribu-
tion is equalto the actual length ofthat line, with each distribution having the
same SD,representing neural noise (Vickerset al., 1972). The sensory magni-
tude at which these two hypothetical distributions intersect is termed the
pointofindifference, since at that value the sensory effect of both linesis the
same. The early version of the accumulator model assumedthatthe point of
indifference is alwaysfixed at the intersection of the two distributions.

Vickers and Smith have proposed that, under some circumstances, the
point of indifference may shift away from the point of intersection, thereby
enhancingtherelative discriminability of one line, while reducing that of the
secondline. It can be shown that a consequenceof such a shift is a decrease in
the overall accuracy of performance. Further, they point to evidence thatin-

spections not favouring any particular outcome mayarise from variation in

the degree to whichthe indifference point shifts within an experimentalses-

sion; in other words, the individual’s performance mayinvolve an indiffer-

ence region (IR), representing a range of magnitudes of sensory effect. Both

the position (i.e., mean value) and the width (i.e., range of values) of the IR

are subject to variation as the individual adapts to changes in the cumulative
distribution of sensory magnitudes experienced in previoustrials. Such

adaptationis held to be automatic and beyondstrategic control. Applying a

new version of the accumulator model which incorporates(a) the IR as a pa-

rameter of individual performance, together with (b) threshold for degree of

caution (see Section 3.1), and (c) residual nondecision time(see Section 3.1),

Vickers and coworkershaveestablished close agreement between actual and

predicted accuracyin discrimination tasks for which distribution parameters
could be specified precisely (Vickers & Smith, 1985).

Since anyinspection from within the IR makesno contribution to the deci-

sion process, it may be seen that, for any value of IR other than zero,the pos-

sibility exists that an initial inspection would not result in the correct re-

sponse, no matter how easy the discrimination task. Such an occurrence
would violate the fundamental assumption underlying the measurement of

IT, that the initial inspection must favour the correct response (see Section
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3.1). Furthermore, the proportion oftrials in which a single inspectionre-

sulted in the correct response would decreaseas the value of IR increased. To

the extent that IR shifted from zero, this would inflate the estimate of IT.It is

not yet possible to estimate whether this does occurin the IT task, and,in-

deed, the research referred to by Vickers and Smith has not involved the IT

task. However, values for IR estimated from their experiments are such as to

raise the possibility that, for some individuals, estimates of IT could be

lengthened artefactually.

Vickers and Smith also query whetherthe lines-discrimination task com-

monly usedis sufficiently easy to be beyondlevels of internal noise forall

subjects. They point out that the initial estimate of noise confirmed by

Vickerset al. (1972) was an averagefor a group of student subjects, and that

muchhigherindividual levels have been recorded under some circumstances.

It is certainly possible that levels of noise among retarded subjects could be

sufficiently high to require a stimulus difference so large that eye movement

would be necessary to input information. Attempts in Adelaide to resolve

this question have so far been unsuccessful, largely because of problemsin

measuring \ among such subjects with high absolute accuracy.

We maynote here that the question of whether IT could in someinstances

be confoundedwith noiseis logically separate from the possibility of individ-

ual differences in IR. Nonetheless, the two parameters could interact. Thus,

the effects on IT from a given value of IR would be greater where internal

noise washigher.

5.3 Validity

(a) Equivalence of Visual Tasks

Theinitial rationale underlying the 2-lights discrimination task wasthatit is

analogousto a limiting version of the lines discrimination from which one

line had been removed altogether (Smith, 1978). One would predict, there-

fore, that measuresof \ from the two tasks would be equivalent but,to date,

support for this is equivocal. Exploratory comparisons between these tasks

using results obtained by Wilson (1980) with lights, and Nettelbeck et al

(1982) with lines, both following a PEST procedure, found nosignificant dif-

ferences in \ within either groups of nonretarded or retarded adults. How-

ever, subsequent morestringent within-subject comparisons havebeen less

encouraging. Thus, Nettelbeck (reported by Nettelbeck & McLean, 1984)

found significantly shorter estimates with the lights task than with lines,

among 10 mildly retarded subjects, although the correlation of .73 between

tasks was strong. However, Edwards (1984) has not only foundsignificantly

shorter estimates with lights among 30 nonretarded adults (as shownin Table

3), but also a relatively weak correlation of .31 between the two versions.

Shorter estimates with the 2-lights task may be the consequenceofless effec-
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tive masking in this version, a suggestion supported by lower estimates of
test-retest reliability with this task, as remarked in Section 5. 1(b). However,
further research with adequate samples and involving MCSand PESTis nec-
essary to establish whether these two tasks are equivalent or not.
Two areas of procedural uncertainty associated with recent attempts to

develop video versionsofthe lines discrimination task mayusefully be noted
here. First, if a video screen is used instead of a tachistoscope to display
stimulus figures, the refresh rate of the raster scan limits exposures to multi-
ples of approximately 20 ms, and performanceat other exposures can only be
estimated by averaging(e.g., accuracy at 25ms can be interpolated from 75%
exposures at 20ms and 25%at 40ms). Screen presentation maytherefore re-
sult in less reliable estimation of IT than using a tachistoscope, although
Mackenzie and Bingham (1985) have obtaineda test-retest correlation of .66
with a video method(see Table 4). Second, unlike most tachistoscopes which
permit independent control of luminancein different fields, video displays
have fixed luminance. Since locus of masking can be influenced by therela-
tive energy of target and mask (Turvey, 1973), it may be necessary to pro-
gram covariation in target and mask durations when employing a video
display to present the target throughout varying SOA,so as to ensure a target
to mask energy ratio appropriate to achieving specific maskingeffects.

(b) Different Modalities

Brand and Deary(1982) have developed a procedurefor estimating auditory
IT, wherebythelistener identifies the order in which twobrief tones of mark-
edly different frequency (770 and 880 Hz) and embedded betweenbursts of
white noise are played separately, 1 second apart and with the duration of
both tones varied together. IT is defined as the minimum tone durationat
which the order of occurrence can be defined correctly. Although Deary
(1980) found a correlation of .99 between this measure and visual IT for 13
subjects, this outcome wasentirely due to the inclusion of two mentally re-
tarded persons; with these excluded,the correlation wasvirtually zero. There
are also groundsfor interpreting measures by this procedure with caution.

First, Irwin (1984) has demonstrated that the degree of separation between
the fundamental frequenciesin this task varies with tone duration. This is be-
cause the amplitude consists of both the fundamental and various harmon-
ics, the energy from these being more spreadat shorter tone durations. Thus,
at very short durations the task may be measuring different processes thanat
longer durations. Second, white noise does not appear to provide an ade-
quate masking stimulus. Deary (1980) has reported an IT range (99%accu-
racy) of 6-160ms, but with 160msrepresenting an “outlier,” since the two
next longest measures were 15 and 20ms. This suggests that the mask em-
ployed wasnoteffective. Irwin’s (1984) results from 49 12-year-olds with this
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technique were markedly more widely spread but sharply positively skewed

(mean for 71% accuracy was 196ms, median 16ms(?), SD = 340ms, skew-

ness 2.34), suggesting that most children found the discrimination required

very easy but that some encounteredgreat difficulty. Following pilot work

utilizing a sound-generating chip to produce a maskin whichbothtarget fre-

quencies were rapidly alternated together with white noise, Edwards (1984)

found markedly different results. However, as shown in Table 3, the range in

d wasstill substantially longer than was found with the 2-lines task, and the

correlation between these two measures was low (though significant) (r =

.39). Nettelbeck (1985c) has reported replicating these results with a different

sample of 24 adults, so that there are some doubts aboutthereliability ofthis

version of IT measurement.

Analternative task for measuring auditory IT has been used by Razetal.

(1983). Oneofa pair of tonesclassified as either high (870Hz)or low (770Hz)

is presented for a brief, fixed duration, followed after a variable ISI by a

masking tone. This task therefore avoids the problem raised by Irwin (1984)

whereby degree of separation between fundamentals changes with varying

duration. Since the effects of contralateral and ipsilateral masking in this

task are similar (Massaro, 1970), and because SOA remainsrelatively con-

stant with changing target duration (Raz et al., 1983), it can be concluded

that maskingis central, as is the case with the visual tasks described in Section

3.2. Further, although only two experiments involving small samples have

yet been madewiththis task, it appears to result in high reliability (refer to

Table 4) and estimates of IT that are compatible with those made with the

2-lines task from comparable samples. Thus, mean ) derived from Raz et

al.’s data is 84ms, 142ms, and 255msfor their high, average, and low IQ

samples, respectively.

Nettelbeck and Kirby (1983a) have pointed to problems with a measure of

tactile IT. This task involved detecting which of two fingers wasfirst stimu-

lated by rapidly vibrating keys underthe finger tips. Although correlations

between this task and the 2-lights discrimination were significant (r = .75,

.37, .32) for mildly retarded (n = 41), average IQ (n = 82), and above-

average IQ (nm = 59) groups respectively, many subjects complained that their

fingertips quickly became numb,andvalues of \ obtained were certainly un-

expectedly long. Edwards (1984) has confirmedthis result (see Table 3), and

found low, nonsignificant correlations betweentactile IT and other measures

in visual and auditory modes. |
Auditory and tactile versions of the IT task have been assumedto be analo-

gousto the 2-lines task, but withoutfirst determining that the discriminations

involved were beyond normallevels of internal noise for those modalities.

Since subjects are now knowntolosesensitivity in the vibrator task as the ses-

sion progesses, it has become obviousthat the signal-to-noise ratio in this

task will reach unacceptably low levels and result in unreliable measure-



332 NETTELBECK

ments. This is an extreme example butit highlights the necessity of research
aimedat establishing noise levels in modalities other than visionif reliable IT
measures in those modalities are to be developed.

(c) Inspection Time(IT) as Mental Speed)

While results discussed in Section 5 generally suggest that IT provides a very
reliable index of individual differences in accuracy,its validity as a measure
of some fundamentallimitation to the speed at which mental processes oper-
ate is problematical. Someresearch has indicated an association between IT
and mental speed butother results have not been wholly consistent withthis
proposal. Nettelbeck (1985a) has discussed the issue, as it applies to studies
comparing mentally retarded and nonretarded performance.

Nettelbeck and Kirby (1983b) foundsimilar trends between IQ in the nor-
mal range (140 adults) and standardized measuresof IT and choice RT(these
measured in unrelated situations), consistent with the involvement of some
common process. The correlation of .21 between nonstandardized measures
of IT and RT wassignificant but low, as would be expected if RT includes ad-
ditional processes not required by IT. A study by Hirons (1982) also supports
the IT-as-speed idea. She comparedITin a 2-lights task with an alternative
estimate of IT suggested by Vickers (1970), and defined as the difference be-
tween the modeandthe fastest correct reaction from a distribution for 400
trials in a 2-choice RT task, following more than 800 practice trials. Among
14 university students, the two measurescorrelated .65.

These results, however, reveal nothing about the nature of speed indexed

by IT. The following three studies attempted to addressthis by testing the de-

gree of association between IT and various tests assumedto reflect different
kinds of mental speed.

Wilson (1984, Experiment 2.1) tested 50 normalchildren aged 8 to 13 years
for IT and performance on the Speed of Information Scale (essentially a
number checking procedure) from the British Ability Scales. She founda cor-

relation of — .53, reducing to — .38 with age partialled out. Moreover, the as-

sociation wasactually limited to 8- to 11-year-olds (n = 30, average within-

cohort correlation = —.61), there being little correlation among the older

children. A subsequent study (Wilson, 1984, Experiment 6) confirmed an

MAinterpretation of the earlier result, since no association was found within

samples defined by MA. A correlation of only — .32 between IT and another

pencil and paper test for perceptual speed (ACER speed and accuracy)re-

ported by Tonisson (1982) from 66 deaf adolescents (mean age 15 years) sup-

ports Wilson’s results. Clearly, stronger correlations than these would be ex-

pected if IT was predominantly a measure of processes shared bytests of

perceptual speed as traditionally defined. Thus, a strong relationship be-

tween IT and perceptual speed maybe limited to youngerchildren.
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Results from Edwards (1984) are consistent with this. Edward’s study was

planned within the frameworkof Cattell’s theory about the structureof abili-

ties and the nature of different kinds of speed within that formulation

(Cattell, 1971; Hakstian & Cattell, 1978; see Section 2). Tests of primaryabil-

ities from the Comprehensive Ability Battery (CAB)!? were selected with the

aim ofisolating different speed variables in association with different general

capacities, as described by Cattell and outlined above in Section 2. Inductive

Reasoning, Numerical Ability, and Spatial Ability were included, together

with the Raven Advanced Progressive Matrices (APM),as tests loading on g,;

Verbal Ability and Mechanical Ability were used to define g.; Speed of Clo-

sure, Perceptual Speed and Accuracy, and Digit Span (WAIS)were used to

define g, and g..'4 Associative Memory and Meaningful Memory were also

included, to isolate General Memory Capacity (Hakstian & Cattell, 1978)

since IT would bepredicted to be independent from long-term retention. Al-

though Edwards employed four versions of IT (2-lines, 2-lights, 2-tones,

2-vibrators), the accounthereis limited to the 2-lines and 2-tones tasks. (See

discussion of validity in Sections 5.3 (a) and (b); the between-task correlation

washighest for these (.39), though hardly sufficient to qualify them with con-

fidence as equivalent forms.)
Results did not support a clear distinction between higher-stratum struc-

tures, only Speed of Closure and(less clearly) Perceptual Speed and Accu-

racy being separable from the other primary ability tests and APM, which

were all moderately to strongly intercorrelated. Mean correlation among

these other tests was .55, compared to .27 between these, Speed of Closure

and Perceptual Speed and Accuracy,the last two being correlated .43. How-

ever, despite this strong evidence for a general factor, IT did not unambigu-

ously conform to this pattern. Although both IT measures were moderately

correlated with APM (see Table 3; multiple R = .47), and notwith either of

the two primary speed measures, IT wassignificantly correlated with only

three of the other intercorrelated variables. Significant mean correlations be-

tween both measures of IT and other tests were — .40 (APM), — .40 (Associa-

tive Memory), — .34 (forward Digit Span), — .32 (Inductive Reasoning), the

mean with all other tests being — .19. The small sample (nm = 30) and the ab-

sence of a coherent distinction between different kinds of speed severely con-

 

13The relevance of the Comprehensive Ability Battery to this purpose was suggested by an

early version of a study by Cooper, Kline, and Maclaurin-Jones (1986) which, however, used a

different configuration of primaryabilities to that described here.

14Although these two factors are theoretically discriminable, an examination of results from

Hakstian and Cattell (1978) suggested that they could bedifficult to separate in practice,al-

though Spatial Ability (acknowledgedto be factorially complex) might serve as a markerfor g,

and Digit Span as a markerfor g.. This rationale was clouded, however, by Dempster’s (1981)

analysis of Digit Span as reflecting predominantly speed ofitem recognition, which he regarded

as being determined byg,.
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strain conclusions from this study. At most, theseresults suggest that IT is as-
sociated with a more general capacity rather than with specific capabilities,
and thatIT is not related to perceptual speed or speed of closure, as defined
by Cattell (1971). Nor do the results support an interpretation in terms of g.°
However,the reliability of this outcomeis doubtful since Cooper, Kline, &
Maclaurin-Jones (1986) have recently found a different pattern of correla-
tions between IT and primary abilities measured by the CAB. Their study
used a different configuration of CABscales and,like Edwards, employed
only asmall sample (7 = 20). While supporting Edwards’ conclusion that gis
not involved, they did find significant correlations between IT with both Cs
and P.

The third study (Nettelbeck, 1985c) utilized Furneaux’s model of problem
solving in ability tests (see Section 2) to derive a measure of mental speed with
which to compare IT. Briefly, Furneaux (1952, 1960) held that individuals
differ with respect to anyofthree critical variables; (a) the rate at which men-
tal processes operateto find a solution(intellectual speed); (b) the probability
that an incorrect solution will be rejected (accuracy); and (c) the duration of
persistence to find a solution before abandoning the problem (continuance).
In these terms,if item difficulty is sufficiently low forall test takers to obtain
the correct solution, then continuance and accuracy cannot influence out-
come and individual differences in performance are limited to speed.
Nettelbeck correlated two measures of IT from the 2-lines task (MCS and
PESTprocedures; see Table 3) with timeto solve individually five items from
the Raven Progressive Matrices (E-series). Analysis was limited to 30 univer-
sity students whosolved these items correctly. Solution speed was moderately
reliable, the average correlation between items being .47. The average corre-
lation between E-items and FSIQ (WAIS) was .49. The 10 correlations be-
tween items and the IT measuresranged from .24 to .51, and seven weresta-
tistically significant (p < .05); mean correlations with separate IT measures
were .37 (MCS)and .31 (PEST). While consistent with the proposal that IT
reflects intellectual speed, the outcomeis less convincing than had beenantic-
ipated. In part, this may reflect error when timing items (a hand-held
stopwatch was used), or limitations to Furneaux’s model, which takes no ac-
count of guessing or differencesin style of hypothesis testing on the way toa
correct solution. The outcome may, however,also reflect subjective varia-
bles in the IT task, other than mental speed, as discussed already in Section
5.2, It is worth noting, however, that the IT-IQ correlation is not simply the
consequenceof time constraints in both IT and IQ tasks. Thus, a recent un-
published study, similar to that just discussed, but removingall time con-
straints to subjects’ responses to Raven Progressive Matrices items, found a
significant correlation of — .34 between IT and the numberof items solved
correctly (Nettelbeck & Vreugdenhil, 1986; n = 25 students; correlation be-
tween IT and FSIQ (WAIS-R) = — .50; for FSIQ and Raven score, r = .58).
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6. CONCLUSIONS

Previous sections have reviewed results from some 29 theses and published

articles that report direct investigations into whetherITis correlated with IQ.

This is not a large numberand, since method and outcomehavevaried con-

siderably across these studies, to venture firm conclusionsis a hazardous un-

dertaking. Nonetheless, as behooves a reviewer, I will attempt to do so, as-

serting at the outset that there is a reliable relationship between IT and IQ.

This is despite the apparent disparity between the levels of processing pre-

sumedto be involved in IT tasks and mentalability tests so that, based solely

on the content of these two types of mental measurement,there is no reason

to predict IT-IQ correlation. If this assertion is accepted, then two further

questions pertaining to this correlation can be posed;first, is the correlation

sufficiently strong to be of theoretical significance?; second, what doesit

mean?

Taken overall, the evidence is consistent with Brand’s proposal that IT is

related to a broad ability, rather than to more peripheralabilities limited to

specific situations. Beyond aboutage 10 or 11, for example, IT does not bear

much relationship to perceptual speed as traditionally measuredin letter-

number checking tests. With respect to verbal ability there is confusing

contradiction, but a numberof the available studies are procedurally flawed

and, on balance, the evidencecan be said to favour Brand’s theory. However,

there is clearly a need for further research into this issue; it may be that

verbal ability tests are more sensitive to acquired knowledge than most of the

other psychometric tests applied, and that IT is associated less with this fac-

tor than with, say, capacities for reasoning or comprehension. Results from

Longstrethet al. (1985) are consistentwith this idea. In addition to measuring

IQ (Cattell Culture Fair Test), they scored 61 of their subjects on the Scholas-

tic Aptitude Test (SAT). IQ and SATcorrelated .48, and the IT-IQ correla-

tion for this subsample (— .47) was virtually the sameasfor the larger group,

as described in Section 4.3. The correlation between SAT and IT was

nonsignificant (— .17), and partialling out SAT left an IT-IQ correlation of

— .42, confirming that this relationship was independent of SAT. Multiple

regression of IQ on IT and SATresulted in R = .65, with both predictorvari-

ables making significant contributions to variance in IQ accounted for.

Thus, the morespecific abilities reflected in SAT, together with those proces-

ses represented in IT, predicted 42% of IQ variance.

Insofar as children are concerned,there is strong evidence for an assertion

that IT shortens with cognitive development, at least until early adolescence.

Hulme and Turnbull’s (1983) results do not support Brand’s prediction of

stronger IT-IQ association at younger ages, but theissueis still open, since

no study hasdirectly addressed it by measuring IT within cohorts for samples

with normally distributed IQ. No study except Hosie’s (1979) has attempted
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to test a relationship between IT andg, in a very young cohort. This result
(Table 3) strongly supported Brand’s theory, but the sample was too small to
permit confident interpretation. (The 95%confidenceintervals for this cor-
relation are — .38 and — .94.) This study did, however, have a numberofat-
tractive procedural features, including associating lines of different length
with highly discriminable colors so as to secure responsereliability. It pro-
vides a useful model for a replication with a larger sample.

The best available estimate of the strength of association between IT and

general ability across the full range of IQ is about — .5. First, the median of

all correlations from adult samples, including those with retarded subjects,is

— .49. Secondly, the uncorrected correlation among normal youngadults(14

years and older) is — .35, which corrected for restriction of variability in IQ

becomes — .50. This estimate has been made from 16 sets of results for which

lines, visual symbols, or tones have been employed as stimuli (Brand, 1984;

Cooperet al., reported by N. J. Mackintosh, personal communication, Au-

gust, 1985; Edwards, 1984, two sets; Grieve, 1979; Irwin, 1984, Experiment

III; Jensen, 1982, p. 120; Longstreth et al., 1985; Mackenzie & Bingham,

1985, strategy nonusers only; Nettelbeck, 1973, 1982, 1985c; Raz et al., 1983,

ExperimentII, two sets; Sharp, 1984; Vernon, 1983). Results not included

when makingthis estimation are those where retarded and nonretarded have

been mixed, or wherethere are specific groundsforasserting lowerreliability

than among thoseresults included, according to foregoing discussion. The

estimation has therefore been made from 529 measuresof IT taken from 439

subjects. Descriptions of age and IQ are available for the majority of these,

so that reasonable estimates are that ages have ranged from 14 to 52 years,

and IQ from 81 to 142 (mean about 115, SD 10).

To inflate this estimate further by correcting for unreliability in the meas-

urement of both variables could hardly be justified, given the range of IQ

tests and different IT procedures employed. The point is that, despite some

degree oftest reliability and the attenuated and skewed distribution of IQ in

most studies so far, the estimate advanced here suggests a sufficiently strong

relationship to be of theoretical interest. This estimate has been possible

without the necessity of applying multiple regression, unlike the situation

with RT, where parameters that have been combinedto achievesignificant

covariation with IQ have not always been the same across different studies.

Althoughit has been suggested that the pursuit of a mental speed—ability

relationship is a wasted effort (Das, Kirby, & Jarman, 1979; Hunt, 1980),it

seemsthat there is an association andit is important that we should ascertain

to what extent and what it means. A variable which can possible accountfor

about 25% of variance in IQ warrants the effort and resources required for a

larger scale investigation of this relationship. My conclusion, then,is to sup-

port Mackintosh’s suggestion for “a study of a large, representative sample of

the population with normal mean anddistribution of IQ, which employed
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factor analysis on a numberof different IQ tests in order to discover which

component or components were most closely related to inspection time”

(Mackintosh, 1981, p. 529). This study should then be followed up by experi-

mental investigations aimed at improving understanding about the nature of

any relationships between IT and componentsof IQ.

To expand Mackintosh’s suggestion, the order of subjects required to do

even one such study adequately is such that collaboration between laborato-

ries interested in this issue would be desirable. Such an arrangement should

be feasible, however, given the wide availability of microcomputer technol-

ogy, which could guarantee that a commonprocedurewasfollowedbyall re-

search groups involved. Somepreliminary developmental research would be

required, however. Thus, the determination of method should extend be-

yond howIT wasto be estimated, to include agreed proceduresfor personal-

ity screening, measuring sensorysensitivity, and for excluding the influence

of strategies aimed at negating mask effectiveness(a topic discussed further

below).
In addition to addressing the question posed by Mackintosh, such a project

might also seek to clarify whether the same IT-IQ correlation is foundat up-

per levels of IQ, as well as checking generalization to the retarded range. Nei-

ther of these matters can be said to be settled. Nettelbeck and Kirby (1983a)

found that excluding 16 subjects with IQ > 115 from a sample of 96 near-

normally distributed for IQ did not reduce IT-IQ correlation from — .59in

the main sample (average of two measures), but this is at best weak andindi-

rect evidence for a ceiling to IT performance for above-averagelevels of IQ

(Brand, 1984). The pattern of correlations in Lally and Nettelbeck (1977) was

consistent with this idea but the distribution of nonretarded IQ was rectangu-

lar, not normal. Reanalysis of Vernon’s (1983) data finds r = —.29 for IT

and IQ 120 and below (n = 24), but the association beyond washesout, not

so much because of convergence but because of a numberof very long IT

measures amonghigh IQ subjects. The only evidence yet available on the sec-

ond matter (see Section 4.2) suggests higher IT-IQ correlation within the

mildly retarded range of IQ but this outcome wasgreatly influenced by

Vernon’s (1983) nonsignificant result in the nonretarded range;if this is not

included then the outcomefor both retarded and nonretardedrangesis virtu-

ally the same.

A sample of 300 young adults, selected in accordance with the full range of

the normal distribution for IQ, would provide an adequate description of

factors defined by a visual and auditory version of IT together with the 11

subscales of the WAISforthe 200 participants with IQs within + 1 SD of the

mean, while retaining 50 in each of two subsamples to check the effects of

including more extreme IQ scores. This sample should besufficient for both

developmentandcross-validation, but procedural replications would be nec-

essary for generalization to different populations, like children at a given
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age, or the elderly. In view of the effort and cost required to mount a project
on this scale, psychometric tests selected would need very careful considera-
tion. If the full CAB were used instead of WAIS, for example, the numbers
required would increase considerably.It is not intended here to recommend
either of these tests, although there would be advantagesin using a complete
instrument which provided a diversity of subscales and which had already
been the focus of intensive researcheffort.
No conclusion can be reached regarding causation and,in view ofsigns of

cognitive intrusion into IT performance, perhaps even at unconsciousas well
as consciouslevels,it is certainly possible that intelligence is responsible for

competence in IT tasks as well as in ability tests. The possibly extensively

used strategy to detect apparent movementin somevisual tasks poses a major

threat to the successful demonstration of IT-IQ correlation, because individ-

ual differences in IT tend to collapse to some short commonvalue, and some

way aroundthis difficulty must be found. The task devised by Longstreth et

al. (1985) is promising, although how it might be checkedagainstlevels ofin-

ternal noise is not clear. Alternatively, IT measures might be developed that

were not dependent upon the backward masking method. Two potential

alternatives in this regard are available (Vickers, 1970; Welford, 1971), al-

thoughto this time their use has largely been restricted to comparisonsbe-

tween mentally retarded and nonretarded adults (Nettelbeck, 1985a). More-

over, both of these measures, which are derived from performance in

conventional RT tasks, have the advantage of avoidingcircularity that exists

between noise and IT when measuredwith the backward masking procedure.

(This arises because IT estimation relies on noise-free discriminative per-

formance, but noise is defined in terms of variability in performance,al-

lowing only a single inspection of sensory input). It is essential, however,

that, before adopting any new method,it be found to match the considerable

reliability of the current procedures. A useful future research strategy would

be to examine within-subject performancein these tasks, together with cur-

rent versions of IT and includingalso other tasks of phenomenalsimultane-

ity and movement, commonly thoughtto reflect temporal limitations to in-

put processing, as well as other threshold measures assumed notto doso.

This would permit an examination of which measures werereliable, which

converged and which did not, and may help advancement towards a more
clearly defined IT construct.

As Vickers and Smith (1985) have pointed out (see Section 5.2(d)), the pos-

sibility exists that estimation of IT from the backward masking method is

confounded,bothbylevels of internal noise beyond those anticipated and by

individual differences in parametersreflecting unconscious adaptation-level.

However, while such confusion would reduce the validity of IT as an index
for speed of apprehension,it would not be expected to reducereliability since

the confounding variables are themselves held to be characteristic to the indi-
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vidual. In these terms, then, IT as currently measured may more appropri-

ately be regarded as an index for the efficiency of activity associated with

early central stages of perception, rather than as speed of apprehension.It

would also seem advisable not to describe it as a measure of perceptual speed.

However, to speculate further about what processes may be shared by IT and

IQ tests serves no useful purpose, unless this has prospects for theoretical de-

velopment. The suggestion by Hunt(1980), that allocation of “attentionalre-

sources” (pp. 466 ff.) may reflect strategic considerations of importance to an

understanding of what constitutes intelligent behavior, seems intuitively

plausible, and should lead to useful research with operationally defined

attentional and strategic variables. However, as Brand (1984) has pointed

out, whetherthe positive manifold amongability tests is attributed to “strate-

gies in attention” or to g does not shift the level of explanation currently

available; accounting for individual differences in terms of either construct

essentially begs the question as to how such differencesarise.

Vickers and Smith (1985) have referred to their recent progress with devel-

oping algorithms for simultaneously estimating several parameters of indi-

vidual discriminative performance from the oneset of data. Measures of de-

gree of caution, residual nondecision time (see Section 3.1), and width of

indifference region (see Section 5.2(d)) have conformedclosely to predictions

from a revised accumulator model but, so far, are limited to tasks for which

difficulty, defined in terms of stimulus and exposure characteristics, is suffi-

cient to virtually suppress the influence of individual differences in internal

noise and IT. The longer-term aim of this workis to realize a similar degree of

precision for situations where internal noise and IT can also be estimated,

along with those measures already achieved. Until this is accomplished,

however, the existing IT measures detailed in this chapter remain the

most promising meansfor investigating a relationship between mental speed

and intelligence. Nonetheless, the theoretical issues raised by Vickers and

Smith do have important implications for the interpretation of IT research

and the checks to future measurementthat they have recommended,against

extreme individual values for internal noise or adaptation-level, are advisa-

ble. A separate estimate of noise (Nettelbeck, 1973b; Vickerset al., 1972), or

a test that d did reliably result in virtually error-free subsequent performance,

would provide a sensible adjunct to current procedures. Since changes in

adaptation-level are manifested in stimulus and response-related sequential

effects, response probabilities and latencies during the course of IT measure-

ment should be recorded and examined for the presence of these effects

(Vickers & Smith, 1985).

Foregoing discussion invites a comment on suggestions (a) that the IT

measure might be developed to supplement conventional IQ assessment

(Nettelbeck & Lally, 1976), or (b) that IT might provide a culture-fair test of

intelligence, as an alternative to existing IQ tests (Brand & Deary, 1982). Al-
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though until now there has beenlittle opportunity to evaluate these ideas,
speculation about the second suggestion,in particular, has attracted world-
wide publicity, both in the popular scientific press and in the general media
(as summarized by Nettelbeck & Kirby, 1983b). Essentially, the assumption
underlying (a) is that (i) IT can reliably reveal something about intelligence
capacities that an IQ test cannot. The second proposal(b) rests on two addi-
tional assumptions:(ii) that whatever processes underly IT are dependent
from cultural influences; and (iii) that IT provides a sufficient account for
IQ.

Regarding assumption(i), it can be said that IT reflects an aspect of pro-
cessing that is not immediately obvious from IQ test performance. This has
been foundto be of consequncein training situation involving mentallyre-
tarded persons (Nettelbeck, 1977; Nettelbeck, Cheshire, & Lally, 1979).
However,the relevanceofIT tointelligencerests entirely on the IT-IQ corre-
lation, and it has not been substantiated for intellectual competence in any
broader sense. Further, one cannotbe certain that IT solely measures speed
of apprehension, unconfounded byother variables and, while this is notcriti-

cal to the assumption,it must limit the practicalutility of the measure. Thus,

conditions that would justify the adoption of suggestion (a) have not beenre-

alized, apart from thesituation referred to.

As far as is known, no evidence is available about assumption(ii), but,

irrespective of how simple a task appearsto be, to the extent that cognitive

strategies can be applied there exists a possibility of culture-related differ-

ences. In any case, this suggestion is not sustainable in the light of evidence

reflecting on assumption(iii). Although there is shared variance between IT

and IQ,it seemsclear that adult intelligence, as measured by psychometric

tests, involves much morebesides processes engagedin IT. In fact, the degree

of relationship found certainly could not support predictions about intelli-

gence as currently measured with acceptable confidence; such predictions

could be in error in either direction by the equivalent of about 13 WAIS-

FSIQ points or more,in a third ofall such cases.

While these speculations are not supported, however, one should notlose

sight of the theoretical significance of the relationship between IT and IQ

which emerges from examination of available data. Such speculation is pe-

ripheral to the main issue considered here and,as Egan (1985) has alreadyar-

gued, one may admit to procedural shortcomings in IT measurement without

necessarily discounting findings from it; one should guard against throwing

out the baby with the bathwater. The answer to the problem posed by

Thurstone almost 50 years ago, and which hasprovided thefocusforthis re-

view, seems to be “to a greater extent than has hitherto been appreciated.”

The questions raised by Brand aboutthe strength and limitationsof a rela-

tionship between speed of apprehension and cognition arestill open.
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7. SUMMARY

Inspection time (IT) is discussed in relation to Brand’s theory that general

intelligence can be understoodin termsofthe speed ofinitial apprehension of

input. A rationale for measuring IT is described within the context of a

theory of perceptual discrimination that incorporates temporal accumula-

tion of evidence as a basic information processing operation. An estimate of

IT (A) is defined operationally as the minimum target duration at which per-

formancein an easytask is virtually error-free. Various backward masking
proceduresin different modalities by means of which IT has been estimated

are comparedforreliability of outcome, the conclusion being that certain vis-

ual tasks requiring discrimination between 2-lines or 2-symbols, and an audi-

tory version involving 2-tones, provide moderate to high reliability. Results

from 29 direct investigations of a relationship between IT and IQ are

summarized and compared in terms of sample characteristics and outcome.

This examination finds important differences in method, with somestudies

procedurally flawed more than others, and considerable variation in out-

come. Nevertheless, evidence suggests a correlation of —.5 between IT and

IQ among normal adults, higher than has generally been found between IQ

and laboratory procedures for measuring speed of information processing.

Results from studies of children are not clear with respect to an IT-IQ corre-

lation but strongly support the theory that mental speed increases with men-

tal age. In broad terms, therefore, the outcomeis consistent with Brand’s

theory but does not support speculation that IT might supplementorreplace

existing psychometric procedures. There is no clear evidence regarding the

existence of a ceiling level beyond which mental speed does notincrease, nor

on the proposal that mental quickness at a young ageis a sufficient condition

for the subsequent development of high intelligence, but more than mental

speed is clearly involved in adult IQ. Overall, these findings are accepted as

justifying a large-scale project to develop improved procedures andto test

further the nature of the IT-IQ correlation in samples at different ages with

normally distributed IQ. What the IT-IQ correlation meansis problemati-

cal. Attempts to link IT with different kinds of mental speed, as described by

Cattell and others, suggest that IT does not reflect perceptual speed as con-

ventionally defined but, instead, is associated with generalintelligence. It is

not clear to what extent IT reflects the outcome of neural efficiency, as

Eysenck has suggested, rather than some fundamental rate determinedby pe-

riodicity in processing. Despite face validity as an index for speed of input,

there are signs that IT can be influenced by various subjective variables, some

associated with personality differences, individual differences in sensitivity,

concentration,level of noise within the perceptual system, and adaptationef-

fects, that are thought to be beyond voluntary control. Other subject differ-
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ences appearto reflect the adoption of different cognitive strategies and are

presumed to beattributable to executive control. However, until procedures

are realized whereby this structure-function distinction can be specified ex-

perimentally, it remains only a post-hoc description and cannot explain the

IT-IQ association. The implications of these findings for future research are

considered and various suggestions made throughoutas to which directions

seem likely to provefruitful.
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CHAPTER 10

The Next Word
on Verbal Ability’

Earl Hunt
The University of Washington

INTRODUCTION

Human language may well be evolution’s most impressive intellectual feat.

In mostanimals, intraspecies signalling is restricted to the communication of

internal emotional states such as fear or sexual receptivity. A few species do

use communication to identify specific threats or food sources. Humans can

do all these things, discuss abstract or nonexistent beings, and eventell lies.

Furthermore, our easily understood language is so complex that the much

publicized “artificial intelligence” computers can only comprehend the

simplest parts of our speech. A recent book onartificial intelligence offers a

useful bolster to the humanego:

an importantaspectofintelligence is not that a genius can play the logical and

mathematical gameof chess but that people whoare not considered to be very

bright can talk, learn, understand, and explain their experiences, feelings and

conclusions. Talking is incredibly complicated. A man with a low IQ is notstu-

 

'This chapteris a general review ofthe field of verbal comprehension.It includes brief summa-
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presentations madeat the NATO AdvancedStudyInstitute on Intelligence, Athens, in Decem-
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England,in April of 1986.
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pid. He’s incredibly intelligent compared to other animals and present-day

computers.

(Schank & Childers, 1984, pg. 30)

This quotation capturesseveral crucial facts about language. The most im-

portant fact is that the level of linguistic competence required to be even a

somewhat marginal humanis very impressive indeed. At the sametime,the

passage acknowledgesthe fact of variation in humanability. That variation

is partly reflected in verbal competence. The ability to deal with languageis

related to, but not exactly the sameas, a general ability to think well. Tradi-

tional intelligence (IQ) tests recognize this; virtually every IQ test (e.g., the

Wechsler and Stanford-Binet tests) contains separate “verbal” and “non-

verbal” scales. The distinction between verbal and nonverbalskills is hardly a

discovery of modern psychology. In the Odyssey, Homer observedthat not

all men have the gift of eloquence. Many a classroom teacher has observed

that not all have the gift of comprehension.

Individual differences in the ability to understand language (henceforth

“verbal comprehension”) are important in humanlife. Because formal in-

structionis largely verbal, individual differences in verbal comprehension are

a major factor in determining who benefits from education. The benefits of

being a good comprehenderappearto extend outside the classroom.Sticht

(1975) found that tests of reading and listening ability were among the best

predictors of job performance in a variety of U.S. Army occupational spe-

cialties. The specialties tested included some (e.g., armored vehicle crewman)

that are not usually considered to be highly verbal occupations. There are

substantial individual differences in the skill with which people deal with

their language, and these differences are important correlates of success in

our society.

Traditionally the task of identifying those of high or low verbalability has

been regarded as a problem in personnelclassification. An impressive set of

tests has been developed to solve it. By and large, these tests are based upon

face-valid samples of verbal performance. Vocabulary tests are given be-

cause vocabulary is obviously essential to linguistic competence. Paragraph

comprehensiontests provide small work samples of how well the examinee

can comprehend a message. There is massive evidence showing that verbal

comprehensiontests of this sort do measure how well individuals can deal

with important aspects of language. What the conventional verbal compre-

hension test does not dois to explain how somepeople achieve higher verbal

competency than do others. The latter question can only be answered by

using tests that are based upon a theory of how verbal comprehensionis ac-

complished, and not upon a theoryof how it is to be demonstrated.

Since this pointis crucial, let us consider an analogy to a well known motor

skill, typing. Typing competence can be measured by seeing how quickly and
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accurately different people type the same documents. The measurementpro-

cedure will identify good and bad typists, but will not explain why some

people havetyping skills and others do not. A finer analysis of typing shows

that it depends upon a complex process of hand-eye-brain coordination. The

muscle movements used to type a given character will depend uponthe posi-

tion of the typist’s fingers before the characteris to be struck. Typists typ1-

cally read the scripts being typed several characters in front of the character

currently being printed. Experienced typists may use information about

likely character sequence, such asthe high frequencytriplet ion, to execute a

sequence of movementsas a single response. Noneof these actionsIs typing,

but all of them are used in typing. Individual differences between typists

could arise from individual differences in the ability to read ahead, differ-

ences in the ability to execute a sequence of movements,or individual differ-

ences in any of a numberof other subsidiary processes of typing. Since ef-

ficiency in one of the subprocesses may compensate somewhat forinef-

ficiencies in other subprocesses, observing that two typists type at the same

speed does not ensure usthat the two type in the same way.

Exactly the same arguments apply to attempts to understand individual

differences in verbal comprehension. A well-designed work sample can

identify good comprehenders. Explaining why some are better verbal

comprehenders than others requires a theory of the comprehension process.

The theory must identify the subprocesses of language understanding, and,

ideally, it must specify ways in which these processes can be evaluated in iso-

lation. Once such a theory has been developed,the nextstep is to locate popu-

lations that vary on global (worksample) measures of verbal performance.

Further studies can then be conductedto associate global variation in compe-

tence with variations shown bythe moretheoretically understandable mea-

sures of subprocesses. Since 1970, experimental psychologists have at-

tempted to do just this. Someofthe key findingswill be reviewed. Before the

review can begin, though, the theoretical underpinnings of the approach

must be made clear. The following section describes a theory of the human

mind, with emphasis on linguistic analysis. Is it the correct theory? No one

knows. Fortunately, though, many investigators are agreed upon the outlines

of the modelto be presented.

A Model of the Mind

Virtually all modern theories of cognition assume that the mind consists of

two somewhatdistinct information structures; a working memory that con-

tains a relatively small amountof information about the current situation fa-

cing the thinker, and a Jong term memory that contains the facts that the

thinker knows about the world. World knowledge can be divided into two
types of information— declarative knowledge about facts, and procedural
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knowledge aboutthe conscious and unconsciousactions that are appropriate

in particular situations. To give someflavorto the distinction, the knowledge

that seeing the visual stimulus CATis a signal to retrieve information about

the concept “cat” is a piece of procedural information. My memory of the

black cat that crossed my path when I wentjogging on the morningofFriday

the 13th is declarative knowledge.

Information in working memoryand long term memorycan be thoughtof

as being stored in an abstract propositional code, rather than as a record of

one’s sensory coding of the environment. (The propositional code may con-

tain some information about the sensory form of the stimuli, but that is an-

other matter.) Working memory and long term memoryare believed to be

supplemented by modality specific buffer memories, or channels, that do

contain memorial information thatis closely tied to sensation. For example,

it is generally believed that, during a conversation, people can recall the last

four or five wordsthat they have heard, but that information presented some

time ago will be stored in a code that reflects the gist of the conversation but

not the auditory sensationsreceived by the listener. The theory assumesthat

the word “information”is stored in an auditory channel, and the gist “infor-

mation” in the moreabstract (propositionally coded) working memory.

The flow of information is assumed to be from the sensory system to the

channels, and from there to long term memory, where procedural knowledge

is used to produce semantically augmented codes that may be inserted into

working memory information structures. The working memorystructures

are then available to provide a further cue for the procedural memory system.

This schemeis shownin block diagram form in Figure 1.

To capture the flavor of the model, considerthe internal events that might

have been producedbythesight of a black cat early on the morning of Friday

the 13th.

1. The sight of the animal places information in a visual channel.

2. The information on thevisual channel activates long term information

about “cats in general.” Some of this information is placed into working

memory, identifying the animal.

3. Working memory information activates further concepts about cats,

including the semantically associated information about bad luck and,

through it, recall of the declarative fact that it is Friday the 13th.

The point of this vignette is that the information structure contained in

working memoryconstitutes an interpretation of an event. The interpreta-

tion will be influenced by the information already in long term memory,and,

as the interpretation is formed,it will serve as a stimulus to activate other in-

formation in long term memory.In order to explain verbal comprehension,
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FIGURE 1. A model of the flow of information during comprehension. See text for
explanation.

one must explain how long term and short term information are moldedto-
gether to create an event interpretation from

a

linguistic message.
The above accountis a very broad-brush treatmentof a model of the mind

that is now the subject of intensive study in cognitive psychology. More
formal treatments of these ideas can be found in Anderson (1983), Hunt and
Lansman (1986), and Thibadeau, Just, and Carpenter (1982). The broad
treatmentpresentedhereis sufficient to highlight the processes that appearto
be essential in achieving the sorts of verbal competencies that people demon-
strably do have. What are these processes, and to what extent do individual
differences in them determine individual differences in general verbal
competence?

Linguistic and Psychological Concerns

Linguists define a languageas the (possibly infinite) set of well formed ex-
pressions that can be created by applyinga finite set of rules to strings com-
posed of symbols from a finite vocabulary. For example, the mathematical
notation that students learn in high school algebra defines a language that
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has clearcut rules for constructing well formed expressions. Students recog-

nize strings such as

(1) at+tx=7-y

and

(2) 2(b + 2x) = 9y

as being well formed because they can identify the elements in the lexicon

(i.e., the elementary symbols), and they can use knownrules of expression

formation to recreate the strings. By the same token, students reject

*(3) 3(b)) = +

as a well-formed expression because there are no languagerules that permit

the symbols in (3) to be combined in this manner. Mathematical theories of

language that were popular in the 1950s and 1960s make language compre-

hension appearasif it depended upon a sequential analysis muchlike the one

that might be used to analyze algebraic equations. In an extremeversion of

these theories, the comprehenderfirst identifies the individual(lexical) items

in a string, then conducts a syntactic analysis to determine whereeachlexical

item appearsin the structure ofthe string, and finally assigns meaning to a

string by combining syntactical knowledge of its structure with semantic

knowledge of the meaning ofthe lexical items,in isolation.

This process, which will be called the “pure linguistic approach,” works

well for the comprehensionforartificial languages, including the important

cases of algebra and computer programming languages. It is easy to show

that the pure linguistic approach is not a good model of the comprehension

of natural language. Numerous examplesofits deficiencies will be offered

below. The basic reason that the pure linguistic approach fails as a model of

verbal comprehension is that, when humans comprehend language, their

goalis to understandthe situation in which the messageis presented. Thelin-

guistic structure of the messageitself is only one of several cues that they may

use to do this. Perfetti, Beverly, Didonato, and Pertsch (1985) offered an ex-

cellent case in point, which has the advantageof being an actual example of

an often hypothesized linguistic structure. A newspaper headline read

(4) Police can’t stop gambling.

Is this a commenton the police’s inability to control criminals or their inabil-

ity to control their own impulsive financial behavior? There is no way to

know without understanding the situation to which the sentencerefers.

A theory of verbal comprehensionhasto explain how messagessuch as(4)

are understood, not how theyare assignedlinguistic structure. Therefore the

pure linguistic model is not a model of the psychological process of compre-

hension. Onthe other hand,it is far from irrelevant. Certainly, some of com-
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prehension is based on linguistic analyses. These analyses can beclassified,

loosely, as involving lexical processes, those involving single words, and

syntactical-semantic processes involving groups of words. The linguistic

model is a useful beginning point in examining how people apply their

information-processing resources to word and sentence understanding. A

psychological model must then be extended to pragmatic analysis of the

message in the context in which it occurs. This is the point at whichthelin-

guistic model breaks down. Andthereis another problem,whichis quite out-

side of linguistics.

A psychological theory of comprehension must explain how people cope

with the real-time pressures inherent in comprehension. Understanding must

keep up with the rate at which information is received. The demandsare most

obviousin listening, but are also present in reading. The lexical and syntactic

processing of new input competesfor resources with the syntactical, seman-

tic, and pragmatic processing of old input. In addition, the processing of new

input will be guided by the results of analysis of previously received frag-

ments of a discourse.

Clearly, language comprehension is a complex process that depends on

many subprocesses. There are marked individual differences in the overall

ability to comprehend language. To what extent are they dueto individual

differences in the various subprocesses? Orin the ability of people to execute

all the subprocesses at once? These are the questions that have to be ad-

dressed if we are going to understand individual differences in verbal ability

instead of simply assessing them.

A Note on Terminology

A certain amountof jargon will be used in the remainder of this chapter.

Unless otherwise indicated, the term “verbal comprehension ability” will re-
fer to the ability measured by any ofseveral written tests of verbal compre-
hension. Suchtests typically include subtests of vocabulary knowledge, the
ability to extract information from brief paragraphs, and (somewhatless of-
ten) the ability to recognize correct syntactical structures. Verbal comprehen-
sion tests can be thought of as work samples of reading. As has been noted,
there is considerable evidence to show that reading comprehensionis usually
an excellent predictor of the ability to comprehend the spoken language
(Palmer, MacLeod, Hunt, & Davidson, 1985; Sticht, 1975).

The term high verbal will be used to refer to a person who acheivesa score
in the top quartile of scores on a verbal comprehensiontest. A /ow verbalper-
son will be defined as a person whosescoreis in the bottom quartile. Unless
otherwise noted, the quartiles themselveswill be defined relative to the popu-
lation of United States university students. It is important to rememberthat
university students as a group have considerably higher verbal comprehen-
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sion scores than do membersof the general population. A low verbal univer-

sity studentwill have a score in the average range ofthe test scoresin the high

school population (Hunt, Lunneborg, & Lewis, 1975).

Throughout, “verbal ability” will refer to comprehension rather than pro-

duction. One can easily imagine a person whois a high verbal, by the defini-

tion just offered, and is low in speech production. Unfortunately, the oppo-

site case also occurs.

The remainingsections of this chapter will first present andillustrate par-

ticular aspects of the comprehension process, and then describestudiesofin-

dividual differences in the process being described. Throughout, emphasis

will be placed on whetheror not a measureof a subprocess of verbal compre-

hension distinguishes between those who,globally, show high or low verbal

ability.

LEXICAL AND SUB-LEXICAL PROCESSES

A language’s lexicon 1s its collection of individual meaning-bearing ele-

ments—loosely, the word stems, suffixes, and prefixes. The vocabulary

consists of the words constructed from lexical elements. The lexical items

themselves are produced by combining perceivable but meaningless speech

elements, such as phonemesand,in written language, graphemes. Thesewill

be referred to as sublexical elements. The sublexical elements are directly per-

ceivable, but are not the smallest possible units of perception. In spokenlan-

guage, the lexicon is developed from phonemesthatare perceived as a unit,

not as a combination of sounds, but the sounds in a phonemecan beper-

ceived when they are presented alone. The graphemes of phonetically based

written languages are similarly constructed of constrained letter groupsthat

appear to function as perceptual units (Spoehr & Smith, 1973). Obviously,

the individual letters can be perceived. In somecases,individual letters func-

tion as graphemes. They are madeupofline patterns that can be seen sepa-

rately but that are respondedto as parts of a gestalt.

There are substantial individual differences in the ability to recognize and

manipulate sublexical elements. My colleagues and I (Huntet al. 1975) asked

college students to judge the order of presentation of a pair of dichotically

presented soundsthat either were or were not sublexical units of speech. The

experimental situation is shown diagrammatically in Figure 2(a). Figure 2(b)

plots the results, showing accuracyin the perception ofthe orderof presenta-

tion of phonemes (/bae/, /dae/ or /gae/) or nonspeech sounds (buzz,hiss,

tone). High verbal students were better than low verbals at discriminating the

order of speech sounds, but there was no difference in the discrimination of

temporal order of nonspeech sounds. This result is consistent with the

“analysis by synthesis” theory of speech perception, which maintains that
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phonetic units are perceived directly, by specialized speech processing brain

systemsthatare at least partially isolated from the normal perceptual proces-

ses for recognition of tones and nonspeech soundsin isolation (Liberman &

Mattingly, 1985). Our results show that, across individuals, the efficiency of

speech perception and nonspeech perception vary somewhatindependently.

Frederiksen (1982) has reported a study of visual speech stimuli thatis

somewhat analogous to our study of verbal stimuli. High school students

were shownstringsof letters followed by a visual mask. A possible sequence

would be

(5) tmea

ok 3&

The time between the onset of the letter string and the mask (stimulus onset

asynchrony, or SOA) wasvaried systematically. Frederiksen estimated the

rate of extraction of visual information from the stimulus by analyzing the

improvement in report as SOAincreased. (A rather complicated procedure

was used to do this. No attempt will be made to explain it here.) Table 1

showsthe changein rate of extraction of visual letter information as a func-

tion of reading ability.

Juxtaposing Frederiksen’s andour ownresults raises an interesting ques-

tion. Are people whoare sensitive to the perception of phonemes in spoken

speech the same people whoaresensitive to the perceptions of graphemesin

written speech? While this question has not been fully studied, the data that

are available suggests that they are. In our own work, high and low verbal

students were identified on the basis of a written test, and then showntodif-

fer in aspects of speech-relevant auditory perception. In anotherstudyin our

laboratory we foundthattests of the comprehension of spoken paragraphs

correlate as highly with tests of the comprehension of written paragraphsas

the reading tests correlate with each other (Palmeret al., 1985). This is con-

sistent with Sticht’s (1975) finding that tests of the comprehensionof written

and spoken English are virtually interchangeable predictors of job perform-

ance in the Army.

TABLE1

Letter Identification and Reading Skill
 

Letter Identification Rate

 

Reading Group (Logistic Transform)

11-47th Percentile 364

48-77th Percentile 378

85-97th Percentile 406

98th Percentile + 443
 

Data from Frederickson (1982).
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Thereis an important qualification to the general observation that reading

and verbal comprehension go together. Some people do have reading-

specific language disabilities (dyslexias), even thoughthey appear,at least su-

perficially, to have normalability to comprehend verbal speech. Somewrit-

ers have suggestedthat this is due to a specific deficit in manipulating visual

information in memory. Such manipulation is a requirement in reading,

since eye movements seem to move somewhat ahead of comprehension

(Morrison, Giordani, & Nagy, 1977). Others have claimed that dyslexia is a

reflection of weaknesses in general verbal comprehension that can be masked

in verbal communication, but that cannot be in reading (Vellutino, 1979).

There may be truth in both positions. Since reading depends upon visual

analysis, the translation of visual information into language information,

and the manipulationoflanguage,failures in any of these component proces-

ses could produce a failure to read. No attemptwill be made here to deal with

this complicatedclinical issue.

The term lexical access will be used to refer to the process of identifying an

auditory or visual stimulus as a lexical unit. Several paradigms have been

used to demonstrate individual differences in lexical access (Hunt, 1978;

Hunt, Davidson, & Lansman, 1981). The /exical decision task illustrated in

Figure 3 has proven to be particularly useful. A participant is shown either a

word or letter string that follows the orthographic conventionsof English;

e.g., CARD or CARG.Thetask is to identify the string as a word or a

nonword. There is a correlation of — .4 between the time required for the

word or nonword decision and verbal comprehension scores. The negative

correlation is expected, because it indicates that slow lexical identificationis

associated with low verbal comprehensionscores.

Doesthelexical decision task really isolate the lexical access process? One

can object that a word-nonworddecision is a measureof a person’s ability to

identify a string as being in the lexicon, but that the decision is not analagous

to normallexical access because the decision can be made withoutretrieving

word meaning. This does not seem to be a serious problem. The Huntetal.

*K

CARD CARG
FIGURE 3. Thelexical decision task. Following a warning,a letter string is displayed.
The observer mustclassify the string as a word or nonword.In the example CARD would
be classified as a word if it were displayed. If CARG were displayed a nonword response
would be made.
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(1981) study included several othertests of various aspectsof lexical retrieval.

Amongthe measures taken weretests of the ability to identify words as dif-

ferent in form but same in meaning(e.g., bird-BIRD) andtests of the speed

with which a noun could be identified as a member of a semantic category

(e.g., Animal. . . Bear?). A factor analysis showed that the measures were

tied together by a single “lexical identification” factor. These conclusions

were reinforced in a larger study of reading in college students, which also

identified a “word handling” factor and foundthat it correlated about .4 with

a factor defined by scores on tests of reading comprehension (Palmeretal.,

1985).

Lexical identification does not occur in a single leap, word meanings are

retrieved over time. Furthermore, the deeper the meaning required, the

more the high verbal individual separates from the low verbal. Goldberg,

Schwartz, and Stewart (1977) demonstrated this using the stimulus matching

paradigm illustrated in Figure 4(a). Subjects were presented with two words,

and asked if they were “the same”by variouscriteria. For example, the words

in the pair (DEAR DEAR)are physically identical, the words in the pair

(DEAR DEER) are homophones, and the wordsin the pair (DEER ELK) are

membersofthe same semantic category. Figure 4(b) showsthe times taken by

high and low verbal university students to makeeach sort of identification.

Students in the high verbal category were faster at making identificationsin

all cases. The disparity between high verbal and low verbal students increased

as the decision requirements became more complex.

Lexical access requires visual or auditory “scanning”; people seek outa tar-

get in the presence of irrelevant or conflicting stimuli. Scanning tasks are

highly susceptible to practice effects. The difference in scanning speeds be-

tween practiced and nonpracticed participants may be as muchasten to one.

The effect is quite general, having been observed whentargets are defined by

visual, auditory, or semantic characteristics (Fisk & Schneider, 1983;

Poltrock, Lansman, & Hunt, 1982; Schneider & Shiffrin, 1977). Could the

observed individual differences in lexical access simply be due to some peo-

ple’s having more practice with the language, and therefore having brought

their scanning skills to a higher level of scanning efficiency? Practice un-

doubtedly does influence lexical access, for high frequency words can be ac-

cessed more rapidly than low frequency words. However,practiceis unlikely

to be the only reason for the observedindividual differences. If high and low

verbal studentsare given equivalent amountsof practice with anartificial lex-

icon, theystill differ in their performance on the stimulus matching task

(Jackson, 1980).

While this finding rules out an explanation of individual differencesin lexi-

cal access based solely on differential exposure to lexical stimuli per se, two

related explanationsarestill viable. People with high verbal comprehension

skill may have developed superior techniques for detecting and storing the
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FIGURE 4. The stimulus matching task. Identity between items may be established at

the physical, homophonic, or semantic levels. (Panel a) The disparity between high and
low verbal ability students increases with the time required to make the match.

meaning of arbitrary linguistic stimuli. Some evidence to support this hy-

pothesis will be presented subsequently. Assumingfor the minute that the hy-

pothesis is true, the high verbal students in Jackson’s study may havepro-

duced better memorial representations of the artificial “verbal” stimuli than

did the low verbal students, even though practice was equated in the two

groups.It is also possible that good verbal comprehendershavesuperiorpat-

tern recognition mechanisms, and thus that they are better able to retrieve

meanings than are poor comprehenders, even though both groups have

equivalent representations of verbal stimuli in their memory. At present,

there is no clearcut evidence favoring either of these hypotheses. Further-

more, the hypotheses themselves are not mutually exclusive.
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What do these findings imply for the total process of comprehension? Let

us consider three facts about lexical processing in general:

1. Lexical processing is compulsory. Language comprehension demands

wordidentification.

2. Lexical processing approximates an automatic recognition process. To

the extent that word recognition is completely automatized (in the sense of

Schneider & Schiffrin, 1977) the act of recognition should exert minimalin-

terference on concurrent mental tasks.

3. Individuals differ in the speed and efficiency with which they access

their lexicon.

Figure 5 is a schematic of how thesefacts fit into the theoretical conceptual-

ization of verbal comprehension. Each subprocess of comprehension must

ATTENTIONAL RESOURCES

V
LEXICAL PROCESSES

V
RESIDUAL RESOURCES

Pp q

SYNTACTICAL PRAGMATIC
AND SEMANTIC PROCESSES
PROCESSES
FIGURE 5. A schematic of the competition for information handling resources during

verbal comprehension.
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complete for the use of a limited amount of information processing machin-

ery, primarily working memory. Since lexical processing provides the raw

material for comprehension (and since spoken words are ephemeral) lexical

processing must be given high priority. To the extent that lexical accessis

rapid and efficient, its priority does not pose a threat to other subprocessesof

comprehension, such as the manipulation of information in working mem-

ory. If lexical access processes are slow, and if they deliver imperfectly

formed “products” (i.e., memorial codes for words) to the comprehension

processes that follow lexical access, the entire act of comprehension may

break down. There seem to be substantial individual differences in the speed

and efficiency of lexical access. Given the same amountof text, and the same

timeto studyit, the high verbal individual probably has a better quality ofse-

mantic information to workwith as further comprehensionis attempted, and

is able to obtain the informationatless cost.

Sentence Processing:

Syntactical and Semantic Aspects of Comprehension

A sentenceis a string of lexical items that conformsto certain syntactic rules

of well formedness. For example, one can imagine a simplified version of En-

glish in which all sentences were presented in subject-verb-object order.If

comprehension followed the idealized linguistic model, the meaning ofa sen-

tence would be determined by discovering its structure, and then combining

semantic knowledge aboutthe individual lexical items with syntactic knowl-

edgeofthe role that each item played in the sentence. The process can beillu-

strated by the analysis of expressions in a well knownartificial language,

commonalgebra. In algebra, the “sentences” are equations that must obey

fairly simple rules for well formedness. The string

(6) x+2*(y-3)=z

is an assertion that the value of z is equal to the value of x plus two times the

value of the quantity “the value of y minus three.” The combinedrole of

structure and semantics is illustrated by contrasting the interpretation of

multiplication (“ * ”) in example (6) with its interpretation in example (7);

(7) x+2*¥y-3 =z.

Semantically, “*” always refers to the multiplication function, which maps

any pair of real numbersinto their product. The argumentsfor the multipli-

cation function are determined bythestructural role of “ * ” in an equation.

The samepoint can beillustrated in natural language by observing that “John

loves Mary” does not mean the samething as “Mary loves John.”
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To take a somewhat moredetailed set of examples, consider the following
three sentences.

(8) * “Dog cat chased barked the the that.”

(9) “The dog that barked chased the cat.”

(10) “The cat that barked chased the dog.”

Sentence (8) is gibberish, since it does not follow the syntactic rules of En-
glish. Sentences (9) and (10) are both “good English,”since they have permis-
sible syntactical structures. By combining the sentencestructure with the se-
mantics of the words, one can constructpropositions from both(9) and (10).
These are logical statements that express the meaning of the sentence. Asser-
tions are usually written in a pseudomathematical notation that express the
relations between terms that are intended by the sentence. The proposition
stated in (9) is

(11) Chases( (barks (dog,past)), cat, past),

and(10)is

(12) Chases (barks(cat,past),dog, past).

The propositional notation highlights the fact that the verb expressesa rela-
tion between the objects that are referred to in the sentence. Since verbs,like
mathematicalrelations, can place (semantic) restrictions on their arguments,
linguistic analysis breaks downif the syntactical analysis does not assign an
appropriate entity to each argument of a verb. “John loves apple pie”is the
basis ofa linguistically plausible proposition, while “Apple pie loves John”is
not, since only animate beings can be the subject of “loves”. What the pure
linguistic analysis is not concerned withis truth. “John loves apple pie”is an
acceptable sentence even if John hates apple ple.
Although the idealized linguistic model will eventually prove to be inade-

quate to explain sentence processing,it is a useful vehicle for analyzing some
miniature language understandingsituations that have been designed to em-
phasize three important psychological points; the importance of working
memory as a necessary part of comprehension,the existence of wide individ-
ual differences in speed and accuracy of sentence comprehension, even when
the messages are of such low complexity that the idealized linguistics ap-
proach is an adequate modelof comprehension, and the importanceofindi-
vidual differences in working memory capacity as a predictor of individual
differences in verbal comprehension ability.

In sentence verification experiments, the participant is asked to determine
whetheror not a sentence correctly describes a picture. A simple exampleis
shownin Figure 6. The speed and accuracy of verification is systematically
related to the complexity of the proposition expressed by the sentence.Forin-
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PLUS ABOVE STAR

4

*K
FIGURE 6. The sentenceverification paradigm. The participant is shown a sentence or

phrase, followed by a picture. The task is to determine whetheror not the sentence accu-

rately describes the picture.

stance,it takes longerto decide that the picture in Figure 6 can be described as

“Plus not below star” than it does to verify the description “Plus above star”

(Carpenter & Just, 1975; Clark & Chase, 1972). This phenomenonis not an

artifact of the experimental situation, noris it due to the fact that sentences

expressing a complex proposition tend to be long. The time required to read

sentencesin text is a function of the numberof propositions the sentence ex-

presses, rather than the number of words involved (Kintsch & Keenan,

1973).2

Speed of sentence verification is correlated with verbal comprehension

scores. This wasfirst noted by Baddeley (1968), and has since been confirmed

in several other studies (Hunt, 1978; Huntet al., 1981; Palmeret al., 1985;

Lansman, 1978; Lansman, Donaldson, Hunt, & Yantis, 1983). Statistically,

sentence verification measures are associated with a proportion of the

variance in verbal comprehension scores that is partially independent

of the portion of variance associated with measuresof lexical access (Huntet

al., 1981; Palmeret al., 1985). This shows that individual differences in

syntactical-semantic processes stand apart from individual differencesin lex-

ical access. Put another way,there are two abilities; the ability to get at words

and the ability to extract meaning from groups of words. Theyarerelated,

but they are not the same.

 

2Therelation between the time to analyze a sentence and the complexity of its propositions

may break downin situations in which visual imagery is used to understand the sentence

(MacLeod, Hunt, & Mathews, 1978). The interaction between visual imagery andlinguistic un-

derstandingis an interesting topic in itself, but will not be explored here. Fortunately,it is also

possible to arrange a sentence verification experiment in a mannerthat ensures that people rely

primarily on linguistic strategies. (Kroll & Corrigan, 1981; Mathews, Hunt, & MacLeod, 1980).

The remarkshere are confinedto studies in whichit is reasonable to assumethatlinguistic strate-

gies were being used.



364 HUNT

The distinction between individual differences in lexical and syntactic-

semantic processing can be made in another way. Suppose that high school

and college students tooktests of sentence verification speed and vocabularly

knowledge. Scores on the two tasks would be positively correlated. However,

the two can be broken apartby a universal, naturally occurring phenomenon:

age. Figure 7 summarizes data from different experiments conducted in our

laboratory, using two independent samples from the same population, Uni-

versity of Washington alumni whoagreedto participate in a series of studies

on changesin cognition over the working years. The left ordinate of Figure 7

shows vocabulary score as a function of age, in terms of the percentage of

wordscorrectly defined. We found, as have manyothers (Botwinick, 1977),

that older people have vocabularies that are equal to or better than those of

their younger counterparts. On the other hand,the speed of analysis of what

are, after all, very simple sentences slows markedly with advancing age.

These results are further evidence for the need to distinguish between mea-

sures of a person’s lexicon and measures of a person’s facility in sentence

analysis. Both abilities are part of verbal comprehension,but neither defines

comprehensionability.

 

AGE EFFECTS
10

Qf
\ VOCABULARY

Lo \8 \
° -——~~“— 7 ‘< ‘y
ao ‘
Lu 6 \y
9 VERIFICATION SPEED \
=< 5- as
©O 4b
o
uJ

2 3k

2

te

0 i i ] ] ] ] i I ] i 
 

0 7 14 21 28 35 42 49 56 63 70

MEAN AGE OF GROUP

FIGURE 7. Vocabulary knowledge increases with age but speed of sentenceverification

decreases.



THE NEXT WORD ON VERBAL ABILITY 365

Since the ability to analyze a sentenceis not perfectly correlated with mea-

sures of lexical access ability, the two processes must depend on somewhat

different information processing structures. Working memory appearsto be

heavily involved in sentence analysis, but only minimally involvedin lexical

access. The case for working memorybeing involved in sentence analysis can

be made onlogical grounds alone. The syntax of natural languages permits

the generation of strings that cannot be analyzed unless the comprehender

can hold role assignmentof a lexical unit in abeyance while other items are

analyzed. Example 9 illustrates this. The processing of the main clause (“the

dog chased the cat”) must be interrupted while the relative clause following

“dog” (“that barked”) is analyzed. In othercasesthe first part of the string

may appearto be analyzable with one structure, but that structureis disal-

lowedbylexical itemslater in the string. The comprehendermustfetch infor-

mation back from working memory in order to derive the correct structure.

Consider the “garden path sentence”,

(13) The horse raced past the barnfell.

The correct propositional structure for “The horse raced past the barn” can-

not be extracted until the last word is detected. While garden path sentences

are somewhatforced, they do occurin natural language and can be compre-

hended. Memory mustbe involved.

Direct observations of people’s behavior during reading have provided in-

dices of memory activity at key points during sentence analysis. Further-

more, activity in working memory appearsto interfere with other, ongoing

information processing. Constituent structures are contiguous wordsthat

are combined into a meaningful unit. For instance, the sentence “the red dog

chased the black cat” containsas its constituents the agent (the red dog) and

the predicate (chased (the black cat)). As shown,the predicate contains a con-

stituent substructure. It appears that people store words in working memory

moreorless veridically, perhaps in an acoustic code, until they can identify

constituents. The process of constituent analysis can interfere with ongoing

perception. If a click is sounded during sentence processing, people tend to

report clicks that were presented within a constituent as having occurred after

it (Fodor & Bever, 1965). To illustrate, one would expect

(14) Thefirst (click) president spoketo thefirst lady.

to be heard as

(14) The first president (click) spoketo thefirst lady.

In terms of the model proposed earlier, the auditory portion of working

memory serves as a holding area until the clause boundary is reached, at

which timethe clause is processed and moved into some moreabstract code.
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Only thenis the auditory portion of working memoryavailable for conscious
reception of the sound oftheclick.3
Working memorymayalso beinferred by observing behavior during read-

ing, where people can control therate of input of information. Observations
of eye movements during reading have shown that people pause whenthey
encounter the end of a sentence. Presumably,the readeruses the pause tore-
arrange his or her working memoryofthe sentencejust read, in order to ex-
tract the correct proposition. This has beencalled the “sentence wrap-up”ef-
fect (Just & Carpenter, 1980). As would be expected from this analysis, when
people are queried for memoryof the exact words they havejust read,their
memory is better for words within a sentence that they are reading than
wordsacross sentence boundaries, even whenthe total numberofwords to be
recalled is held constant (Perfetti, 1985). This is consistent with the assump-
tion that comprehenders store words until a sentence or similar constituent
boundaryis detected, and then replace the wordsby the proposition they ex-
press. There is no need to retain the exact words of a sentence in working
memory once the proposition has been extracted.

In the studies just cited the role of working memorywasinferred by noting
how working memory involvement in comprehension appearedto preclude
other activities requiring working memory. An alternative way to demon-

strate the importance of working memory in sentence comprehensionis to

overload working memorywith informationthatis irrelevant to comprehen-

sion, and then to show that the memory load interferes with comprehension.

This has been donein studies by Baddeley and Hitch (1974) and Lansman

(1978). A rather complex pattern of results has emerged.
Figure 8a shows Lansman’s procedure. Herparticipants werefirst given a

list of digits to remember, then verified sentences in a paradigm similar to

that illustrated by Figure 6, and finally recalled the digits. A rather complex

picture was observed. The presence of the memorization task increased sen-

tence verification times, especially when the memory load washigh(five or

six digits to be remembered). However, the effect was almost entirely con-
fined to an increase in the time requiredto verify the first sentence presented
after the digits had been displayed. This is shownin Figure 8b, which displays
sentence verification timesas a joint function of the numberofdigits to be re-
membered,the position of the sentencerelative to the memory task (immedi-

ately following or after one or moresentences), and the verbalability of the

 

*The experiments on click perception have been criticized on the grounds that there may
have been responsebiases to report uninterrupted constituents, and on the groundsthatthe ef-
fect could be producedbytheparticipant’s reorganizing constituent structures in memoryat the
time of recall. While response biases do exist, they cannot accountfor the entire effect. Even if
the second point were granted, the studies would still demonstrate the major point being made
here, that during comprehension constituent structures become constructed units in working
memory. See Clark and Clark (1977) for a brief review of the issue and furthercitations.
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participants in the experiment. A similar series of experiments by Klapp,

Marshburn,and Lester (1983) producedessentially the same results. What

this suggests is that the working memory space occupied by sentence compre-

hensionis not identical to the space occupied by the digit memorization task.

Thus, an analogy to a workbench shared betweenthe twotasksis not appro-

priate. On the other hand,it does appear that attention can be fixed on only

oneofthe tasks in working memory,and that, when a newtaskis introduced,

some time is required for the comprehender to move attention from the

working memorystructures required forthefirst task (here, digit memoriza-

tion) to deal with the secondtask (here, sentence comprehension). Both tasks

compete for attention to working memorystructures, but not for the space

occupied bythose structures. This phenomenon appearsto be quite wide-

spread, and can account for the data on competition between concurrent

tasks in a numberoffields in addition to language comprehension (Wickens,

1979).

These results introduce complexities into whatat first seems a simple ques-

tion; to what extentare individual differences in verbal comprehensiondeter-

mined byindividual differences in working memorycapacity? Clearly, some

information abouta linguistic messageis held in memory while further infor-

mation is being processed. The efficiency of the memoryprocesswill be de-

termined by the amountof attention that can be devoted to it, but this will be

determined by the amountof attention required by the comprehension proc-

ess. The converse reasoning also applies; the amountof attention available

for comprehensionofan incoming messagewill be determined by the amount

of attention required to maintain the memorial information needed to retain

coherence in comprehension. Thus, a test of working memory capacity, in

isolation, will be an imperfect measure of the availability of memory re-

sources available during verbal comprehension.

Danemanandher colleagues have expandedonthis idea to develop a tech-

nique for measuring the amount of working memorythat is available in the

context of language comprehension (Daneman, 1984). Participants read sen-

tences aloud, to ensure that they must attend to each word. On demand,they

mustrecite the last words of the sentences just read. A possible sequence of

presentationsis

(15) Whenat last his eyes opened there was no gleam of triumph, no

shade of anger.

The taxi turned up Michigan Avenue wherethey had a clear view

of the lake.

RECALL

Subject responds — anger,lake.
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A person’s “memory span while reading”is defined as the numberofsen-

tences that can be read while maintaining perfect recall. Memory span while

reading is a better predictor of general verbal comprehensionscores than is

the conventional memory spantest, in which a person is askedtorecalllet-

ters, digits, or words without executing any concurrent task (Daneman &

Carpenter, 1980). More impressively, memory span while reading can be

shownto be an accurate predictor of a person’s performanceat those points

in language comprehension at which working memory demandsare highest.

“Garden path” sentences such as example (13) provides a case in point.

People with high memory spans while reading are better able to understand

garden path sentences than are people with low memory spans (Daneman &

Carpenter, 1983).

Studies of the role of working memoryin the comprehension of isolated

sentences probably understate its importance in normal discourse compre-

hension. Many of the propositions expressed in sentences in connected text

can only be understood by reference to information in previous sentences.

This is especially true if a sentence contains an anaphoric reference to items

mentioned in previous sentences. Anaphoric references tax working mem-

ory, but at the same time theytie a text together by making explicit arguments

shared by different propositions. Pronouns are good examples of anaphors,

as in

(16) John entered the restaurant. He wasa tall and haughty man who

had an appreciation for good food.

“He” in the second sentence refers back to John, connecting two separate

propositions. Resolving anaphors requires a search of working memoryfor

possible references. Resolution can be madedifficult by increasing the

amount of discourse betweenthe referent and the reference. Compare (16) to

(17) John entered the restaurant. The apple strudel looked particu-

larly inviting. He wasa tall and haughty man, who had an appreciation

for good food.

Anaphoricreferencesarestill more difficult if there are semantically possible

referents for a reference, as in

(18) John entered the restaurant. The headwaiter approached

quickly. He wasa tall and haughty man whohad an appreciation for

good food.

compared to

(19) John entered the restaurant. The hatcheck girl approached

quickly. He was a tall and haughty man who hadan appreciation for

good food.
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Daneman and Carpenter (1980) showed that memory span while readingis a

predictorof the ability to resolve anaphoric references. Figure 9 depicts one

of their results. This is particularly striking evidence showingthat individual

differencesin the ability to hold information in working memoryduringlan-

guage comprehension are important determinants of overall comprehension

ability.

Understanding Wordsand Sentencesin a Linguistic Context

Earlier, it was pointed out that the purpose of linguistic analysis is to dis-

cover the propositions expressed in a text. The purpose of verbal comprehen-

sion is to discover the propositions that describe a situation. The idealistic lin-

guistic view (which no one seriously maintains) assumes that linguistic

analysis precedes comprehension.It is easy to show that a comprehender’s

understanding of a situation can influence linguistic analyses. Compare

(20) Mary heard a crash in the kitchen. She knew that John had a

handin the cookiejar.

100 ANAPHORIC REFERENCE STUDY
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FIGURE 9. Accuracyin resolving anaphoric referencesas a function of the distance be-

tween the anaphorandits referent and the level of performance on the “memory span

while reading”test.
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to

(21) Mary spentall evening scrutinizing the account books. She knew

that John had a hand in the cookiejar.

The contrast betweenthese sentences could bepresented as a special case of

the resolution of lexical ambiguities, as in

(22) The operastar took a bow.

compared to

(23) The sailor stood on the bow.

In either case, some mechanism has to be described to explain how a

comprehender knows which meaningto assign to the polysemeous word or

phrase. The problem extends to the resolution of syntactical ambiguity.

Perfetti et al. (1985) reported the newspaper headline

(24) Council bill to protect squirrels hit by mayor.

The sentence structure of (24) is easily recovered, providing that the reader

has the extralinguistic knowledge that mayors frequently attackbills, andsel-

dom attack squirrels. A theory of verbal comprehension must explain how

linguistic and world knowledge are combinedto produce understanding.

Having an idea sensitizes a person to related ideas. This fact has been the

basis of associationist theories of the mind at least since Aristotle (Anderson

& Bower, 1972). In the case of verbal comprehension, the arousal of an idea

in the early part of a text will facilitate the recognition of related ideaslater in

the text. This is one of the ways in which world knowledge can biaslinguistic

analysis. Example (25) is easily understood, becausethe predicate is semant-

ically compatible with the subject.

(25) Ivan the Terrible was cruel and despotic to his enemies.

Example (26) is harder to comprehend because naming the subject accesses

semantic associations that are contradicted by the predicate.

(26) Ivan the Terrible was kind and lovingto his wife.

Responding to associations is an imprecise form of reasoning. There is

nothingliterally wrong with (26); it simply denies the semantic associations

most Western readers have connected to “Ivan the Terrible.” (There is some

historical evidence for the sentence’s truth!) It is easy to demonstrate,

though, that recognition of one word primes the mind to recognize related

words. Furthermore, priming depends uponthe topic being attended to, and

not solely upon the proximity of the priming word to the to-be-recognized

word (Foss, 1982). Since most discoursesare predictable, priming normally

facilitates comprehension becauseit sensitizes concepts that, on a statistical
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basis, are likely to be referred to in the subsequent text. To what extent are
there individual differences in the mechanism of priming, and individualdif-
ferences in the relative weight that people place on priming or moreprecise
linguistic analyses to determine meaning?

Thelexical decision task is a useful vehicle for studying priming, since the

lexical recognition of one wordwill facilitate recognition of semantic associ-

ates. For instance, presenting the word “Doctor”will speed recognition of the

subsequent word “Nurse.” The phenomenonhasbeenreplicated so often that

it is beyond question. Onthe other hand,individual differencesin sensitivity

to priming effects appear to be small and unreliable. In one studyin our labo-

ratory (Palmeret al., 1985) we found substantial priming effects, averaged

over subjects, but virtually no reliable individual differences. Naturally, this

precluded our finding any relation between individualsensitivity to priming

and other aspects of verbal performance. Results such as these suggest that

the efficiency of the priming mechanism does not vary greatly across in-

dividuals.
An even stronger conclusion has been reached by Stanovich (1980), on the

basis of a series of studies of priming by sentence context. In these studies, a

sentence fragment is presented, followed by a target word. The sentence can

establish a context that facilitates word recognition. An exampleis

(27) CONTEXT — Ivan the Terrible was

TARGET cruel

Stanovich observed that fluent readers do not benefit from context more

than beginning readers. If anything, the converse is true. It appears that

weaker readers rely relatively more upon the nonspecific meanings rein-

forced by priming, while strong readers rely more onthe precise definition

producedby efficient lexical and syntactical-semantic processing.

Figure 10 shows someresults that support Stanovich’s argument. Skilled

and unskilled grade school readers were asked to identify words,either alone,

in the context of a list of related words, or in a context of astory. Skilled read-

ers were faster than unskilled readers, but contexts madelittle difference.

These dataare particularly interesting because,in this study, context was es-

tablished by a spoken sentence (Perfetti, Goldman, & Hogaboam,1979). Ap-

parently, Stanovich’s argument applies to comprehension of both spoken

and written speech.

The fact that “lower verbals” rely more on generalized context effects than

do “higher verbals” wasillustrated rather dramatically in a study by Gleitman

and Gleitman (1979). Three groups of subjects — high school graduates not

intending to go to college, college students, and Ph.D. candidates — listened

to word strings and then explained what they meant. Thelinguistic structure

and speaking intonationsof the strings were created by taking a wordtriplet
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FIGURE 10. Contextual priming effects as a function of level of readingskill.

andaltering it either in phrasing or order. Such changescandrastically alter

meaning. Everyoneagrees that

(28) black bird-house

is a dark housefor birds. Somewhat morestartlingly,

(29) black-bird house

is a house, of undefined color, for a certain species of bird. But whatis the
meaning of

(30) black house-bird.

Myownfavorite interpretation is “a canary dippedin ink.”
The Ph.D. candidates were able to give interpretations that conformed to

both the order and phrasing of the word string. The high school graduates
wereless able to do so. The pattern oftheir errors displayed a systematic bias
toward conformity with the general context of the words: i.e., a distortion to-
ward meaningful semantics by ignoring the precise order and phrasing of the
linguistic stimulus. Some membersofthe high school group interpreted (30)
as “black bird-house,” disregarding the exact linguistic stimulus in order to
react to semantic associations of its components.

Evidently people with generally higher verbal competence have a morepre-
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cise picture of whatthe linguistic stimulus is. There is an interesting way to

test this contention. Suppose a person encounters an unfamiliar word in a

text. What does “glop” mean in the sentence

(31) Two glop three equals five.

This example is not whimsical. Vocabulary acquisition probably depends on

learning from context much more than uponlearning from explicit instruc-

tion (Miller, 1981). In the case at hand, most people will assumethat “glop”

means “plus,” because “plus” fits the semantic and linguistic constraints of

the sentence. Inferring the correct meaning is possible only if one knows En-

glish syntax, the meaning of otherlexical items in the string, and the rules of

arithmetic. Now consider the following, more complex example.

(32) The boyars hated Ivan because he had abrogated manyancient

rights and privileges. The commonpeople lovedthetsar, both for his

piety and because he had protected them against the harsh rule of the

boyars.

Whatdoes the word “boyars” mean?Is it a singular or a plural term? As most

readers will have guessed, boyars were medieval Russian nobles. How did

you know?

People with high verbal test scores, and older children, provide better defi-

nitions from context than do low verbal people or younger children (Freyd &

Baron, 1982; van Daalens-Kapteijns & Elshout-Mohr, 1981). In itself, this is

not surprising, because inferring meaning from context requires an under-

standing of the restrictions imposed by context and,by definition, good ver-

bal comprehendersare better at comprehension! The wayin which the good

comprehenders infer meaning is of more interest. Sternberg and Powell

(1983) classified the cues provided by a context into external cues, provided

by the unknownterm’s position in the sentence and the meaning of the words

aroundit, and internal cues, provided by the structure of the worditself. In

example (32), “boyars”are certainly animate and probably human, because

the term must satisfy the semantic constraints on the subject of the verb

“hated.” The reference to “Ivan” as a “tsar” locates the boyarsin history. The

fact that the boyars had powerindicates their position in society. These are

external cues. In order to identify “boyars” as a plural term, internal cues

must be used. To see this, note that example (32) would makesenseif the sin-

gular term “Duke” were substituted for “boyars.” However “boyars” is not

capitalized, so it cannot be a proper noun, and the wordendsin “s,” which is

the usual ending for an English plural.

Sternberg and Powell (1983) found that high school students, on the aver-

age, responded only to external cues, while college students responded both
to internal and external cues. Taken together with the previous findings, the

studies of how people extract word definitions from context provide further
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evidence that good comprehenders simply have a better idea of whatthelin-

guistic stimulus is than do poor comprehenders. Therefore, when compre-

hension is to be based on combining the information from linguistic analysis

and general situational cues, the good comprehendersplacerelatively more

weight on the linguistic analysis than do the poor comprehenders.

DISCOURSE COMPREHENSION

Comprehension is normally an attempt to understand discourse, not words

or sentencesin isolation. Purely linguistic theories are quite inadequate mod-

els of how people do this. Discourses cannot be understood without com-

bined understanding of the linguistic structure of the message, the topic un-

der discussion, and therole of the message in the overall situation. The latter

is called the pragmatic meaning of the message. It can be quite different from

the meaning that would be extracted solely by considering the information in

the messageitself. To coin a slogan, the meaning of the message may not be

the meaning in the message. Shakespeare offers us an elegant example, Mark

Anthony’s funeral oration in Julius Caesar. Sentence by sentence, the oration

is an explanation of why Brutus and Cassius hadto kill the tyrant Caesar.

Taken in context, it is a stunning denunciation of the assassins.

Walter Kintsch and Teun A.van Dijk have developed a model of discourse

comprehension based on an extension of the idea of analyzing the proposi-

tions in a sentence (Kintsch & van Dijk, 1978; van Dijk & Kintsch, 1983).

Their model extends the idea of propositional analysis to encompass dis-

courses. For instance, the passage about Ivan the Terrible (Example 32)

could be expressed by the proposition

(33) And (Hate(boyars, Ivan = tsar,

(attack (Ivan, rights of boyars)))),

(Love(commonpeople,Ivan,

(and(pious,(Ivan),

(protect(Ivan, common people,boyars))))).

The central meaningofthe text is expressed by the conjuction oftwo proposi-

tions, that the boyars hated Ivan and that the commonpeople loved him.

“Hate” and “love” are treated as propositions that require three arguments,

an agent (boyars for hate, and commonpeople for love), an object (Ivan in

both cases), and a cause. The causefor hate is stated as a proposition about

Ivan’s attack on the boyar’s rights, while the causefor love is a conjunction of

two further propositions about Ivan’s actions.

Kintsch and van Dijk refer to the propositional structure of a discourse asa

macroproposition. The macroproposition must be built up piece bypiece, by

identifying the micropropositionsin individual sentencesandfitting them to-
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gether. The actual construction of the macroproposition is assumed to take
place in working memory. Since working memory will seldom be large

enoughto store all the micropropositions in a text simultaneously, micro-
propositions must be placed into the macroproposition selectively. What the
comprehender must dois to keep in working memorythoseparts of the devel-

oping macroproposition that will be needed to fix new micropropositions
into their appropriate place as they are identified.

The spirit of Kintsch and van Dijk’s model can beillustrated by an in-

formal analysis of example (32), the passage about Ivan. The various panels

of Figure 11 show the progressive construction of a propositional form from

the text. The first phrase (“The boyars hated Ivan”) establishes the initial

proposition (Figure 11a). In establishing the proposition, the verb “hate”is

treated as a template for a particular propositional structure. This is consist-

ent with several theoretical treatments of the representation of language se-

mantics in memory (Norman & Rumelhart, 1975; Schank, 1972). Because the

cause slot of the templateis not filled by the phrase,a part of the developing

working memorystructureis left open. In terms of the theory, the goal of

finding why the boyars hated Ivan will have been established in working

memory,as a guide to subsequent processing of the linguistic message. The

goal is satisfied by processing the next clause (“because he had abrogated

their ancient rights and privileges”) leading to the structure shownin Figure
(11b).

The structure in (11b) is rather large. Supposethat it preemptsvirtually all

working memoryresources. If any more processing is to be done, something

will have to be dropped. Figure (11b) also shows a substantial amount of

cross referencing. This has been indicated by numberingeachlexical item as

it is encountered, but retaining the same numberif twolexical itemsrefer to

the same semantic entity. Thus “Ivan (3)” appears twice, to indicate that the

same Ivanis being referred to, and “boyars(2)” appears three times. The as-

(2) Hate (1)

! ,
| |

Actor Object Reason

| | |
boyars (2) Ivan (3) (?)
FIGURE 11. The sequential construction of a macropropositional representation of a

discourse. See text for an explanation.
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signment of reference numbersto the second and third appearanceof the bo-

yars term will have required a resolution of the anaphoric reference “their.”

The second sentence (“The common people loved their tsar”) cannot be

processed until some room is madefor it in working memory. Kintsch and

van Dijk offer a variety of rules that comprehenders may use to compactthe

propositional structures in working memory. Noneoftherulesis infallible,

but all are useful when properly applied (van Dijk & Kintsch, 1983). One

common rule drops propositions that are low in the hierarchy of proposi-

tions. An example would be the proposition “pious(Ivan)”in (33), which is

deeply embeddedin the text macrostructure. Anotheris to retain proposi-

tions that are linked to other propositions by extensive cross referencing.

Note that Kintsch and van Dijk’s rules could be executed by a production sys-

tem machine,such as the onesketchedin the section of cognitive theory. Ap-

plication of the first rule, followed by processing of the first part of the sec-

ond sentence, leads to the structure shown in Figure 11(c). Note the term

“refer to LTM”in the “cause”position of “hate.” This is a statement saying

(c)

 
 

Hate (1) Love (4)

| | | | i |
Actor Object Cause “er anes Cause

boyars Ivan (refer to Coamon Ivan (7)
(2) (3) LTM) People (3)

(5)
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that the cause for hatred may have beenstored in a long term memorystruc-
ture, but is not nowatthe focus of attention. This point is discussed below.
Butfirst the analysis of the passage must be completed.
The question mark in Figure 11(c) indicates that the comprehenderhases-

tablished the goal of understanding why the commonpeopleloved Ivan.Par-
enthetically, it appears that finding causes for things is an importantgoalin
human comprehension.Thegoalis realized by an analysis of the next phrase
(“because of his piety and because he had protected them against the harsh
rule of the boyars”), Figure 11(e). This is rather a mouthful, and would no
doubt be comprehended in pieces. If working memoryfilled, something
would have to be removed to make room forthe final phrase (“protected
them”. . .”). A candidate for removalis the entire structure concerning the
boyars’hatred forIvan,as this is a logical unit that is not required in order to
comprehendthe separately stated reasons for the people’s love for Ivan (con-
trast Figure 11(d) to Figure 11(e)). Indeed, it could be argued that the final
structure is itself too large for working memory. If so, what should be
dropped? The mostlikely candidateis the structurerelating to Ivan’s piety, as
this is both low in the hierarchy of propositions and notastightly cross refer-
enced to other terms in the macropropositionalstructureasis the proposition
dealing with protection of the people.

The development of a working memorystructure is a temporary stage in

comprehension.In orderto retain informationfor any length of time, propo-

sitional structures must be transferred to long term memory. Indeed, as

shownin the diagram (andillustrated dramatically by studies of people with

exceptional memorizing ability—Ericsson, 1985), long term memoryis re-

quired as a supporting structure for working memory during comprehension,

in much the same way that secondary storage systems (e.g., disks) are re-

quired in digital computer systems. What precipitates the transfer of infor-

mation into LTM,and whatrules are used to decide whatis stored there?

The most parsimonious assumption to makeis that transfer of informa-

tion to long term memoryis a random processovertime, independentof the

content of the information. Therefore, the only determinantof the probabil-

ity of retention of information abouta proposition will be the time that the

proposition is resident in working memory. However,the time that informa-
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tion is resident in working memorywill itself be determined bytherole that

the information plays in discourse comprehension. Propositions that are re-

quired to bind large sections of the discourse together will be resident in

working memoryfor an extendedperiod of time, and thus are almostcertain

to be stored in long term memory.In the illustration of Figure 11, the propo-

sition “The boyars hated Ivan”has a long residency in working memory,and,

thus, one would expectit to be recalled. There is experimental evidence for

the expectation. Miller and Kintsch (1980) have shownthatthe probability of

recall of a proposition in a text can be predicted by using the Kintsch and van

Dijk model to analyze a proposition’s residency in working memory during

discourse comprehension.

It is worth noting that the Kintsch and van Dijk model stresses the influ-

ence of the comprehension task upon memory.If a recipient of a linguistic

message were told to process that message in some waythat did not require

comprehension, such as counting words that began with “p,” text structure

should havelittle influence on memory.

The Kitsch and van Dijk model, andotherslikeit (e.g., Sanford & Garrod,

1981) are compatible with the general theoretical position taken here. Models

of comprehension can berealized by production systems. Comprehension

will be guided by three different characteristics of the comprehender. These

are the comprehender’s possession of rules (productions) that identify the

central points in a text, so that they are retained in working memory for some

time; the total amount of working memoryavailable; and the rate at which

the comprehendertransfers information from working memoryinto long
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term memory. To what extent are each of these processes significant factors
in individual differences in verbal comprehension?
Daneman and Carpenter (1983) studied people’s ability to integrate infor-

mation across sentences. College students read a variety of cleverly worded
paragraphs that contained references to previously presented information.
An example is the “microstory”

(34) John heard a noise. He wanted something to defend himself so
he went to the cupboard wherehestored his baseball equipment. He

found a bat that was large and brown andthat flew out of the room

when John openedthe door.

The phrase “flew out of the room”can beplacedin the propositional struc-
ture only if the comprehenderhasretained the lexical term “bat,” so thatits

secondary meaning (small, flying animal) can beretrieved. If the surface

structure has been replaced by a completely abstract semantic (or a long term

memory reference to such a structure) that designates “bat” as “instrument

for striking a baseball,” disambiguation is more difficult. Daneman and Car-

penter found that people with reading memoryspansoffive items or more

correctly disambiguated 85% of the references, while people with spans of

two orless correctly disambiguated only 49% of the references. Further ex-

periments using other linguistic devices forcing information integration

across sentence boundarieslead to essentially the same conclusion. Individ-

ual differences in the effective size of working memory appearto be a sub-

stantial source of variation in verbal comprehension, becauseoftheir inter-

action with rules for processing text. This result is particularly impressive

because the participants in Daneman and Carpenter’s studies were all under-

graduatesin a highly selective private university, and thus can be presumed to

have had above averageverbalskills.

Message comprehension is a cooperative process in which the message

transmitter assumesthat the receiver already has some relevant knowledge,

identifies that knowledge, and then imparts some new informationrelated to

it. This is sometimesreferred to as the “given-new contract”; the messagefirst

identifies information that the sender presumesthereceiver already has, and

then imparts a new piece of information related to the old information (Clark

& Havilland, 1977). Comprehension depends upon the receiver already

knowingthegiven, i.e., upon the receiver already having the vocabulary and

concepts thatwill be used but not defined in the message. Technical writingis

an excellent example of how comprehension dependsuponthis aspect of the

given-new contract. The following introductory paragraph from anarticle in

the journal Science makesvery strong implicit assumptions about what the

reader already knows.

(35) The crystal structures of four gene-regulatory proteins —the

lambda cro protein, the NH2-terminal domain of the lambda re-



THE NEXT WORD ON VERBAL ABILITY 381

pressor, and the CAP protein and the trp repressor of Escheria coli

have been reported. Each of these proteins binds to its operatorsite(s)

as a dimer and forms a complex that is approximately twofold sym-

metric.

(Jordan, Whitcome, Berg, & Pabo, 1985).

Doesthis sort of communication only occur in academia? Hardly. Example

(36) is taken from thesports page of a daily newspaper;

(36) Chicago hosts the LA Ramsto determine the NFC’s Super Bowl

representative. There will be no sideshowsin this one but it doesn’t need

any. Walter Payton running one way and Eric Dickerson the otheris

plenty, and add to that The Refrigerator and friends snacking on Ram

quarterback Dieter Brock.

Seattle Times, Jan. 11, 1986, pg. D-1

Somepeople will understand one of examples (35) and (36), many people will

not understand either, and there may even be a few football-watching

biophysicists who understand both. There certainly are individual differ-

ences in comprehension that can be traced to individual differences in spe-

cialized vocabularies or individual differences in the content area of a

message. Technically, these could be said to be dueto violationsof the given-

new contract, the discourse producer has simply assumed somethingthat the

receiver did not know. Studying the situations in which such breakdownsof

communication occuris not likely to tell us much about the psychology of

discourse comprehension, although it maytell us something about the

metacognitive demands of discourse production. That topic, however,is be-

yond the scope of the currentarticle.

Schank (1982) has argued for a broader interpretation of the “given-new”

contract. He pointed out that linguistic messagesare rarely, if ever, complete

thoughts. Instead, they remind the comprehenderof a generalized situation

that is already known,and then specialize the general knowledge to a specific

case. To take a much used example, people in Westerncivilizations virtually

all have a “restaurant script” that describes how one obtains food in a com-

mercial eating establishment (Schank & Abelson, 1977). The restaurant

script contains a numberofspecialized scripts that refer to particular types of

restaurants. Thus, if one hears (in 1986) that

(37) John paid $10.00 for a continental breakfast at his hotel.

one “knows,”becauseit is part of the appropriate script, that John was prob-

ably greeted by a headwaiter, seated at a table, and presented a bill after hav-

ing eaten breakfast. A very different set of assumptions(i.e., a different vari-

ety of the restaurant script) would have been evoked by “John paid $1.50

...Achild, less familiar with restaurant scripts, might not have realized the

differences in restaurants that is implied by a difference in price.
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The knowledge that people have about general situations has variously
been referred to as scripts, frames, and schemata. Althoughthese terms have
slightly different meanings, the distinction between them is not important
here, so the more general term “knowledge structures” will be used. Weall
have committed a great many knowledgestructures to memory, and weuse
them in our everyday comprehension.In fact, when peoplerecall events dis-
cussed in a discourse, they may havetrouble discriminating between infor-
mation that was explicitly presented and information that would be included
in the appropriate stereotypic structure (Bower, Black, & Turner, 1979;
Locksley, Stangor, Hepburn, Grosovsky and Hochstrasser, 1984). Despite
the possibility of such distortions, stereotypic knowledgestructuresare use-
ful becausethey aid in organizing the incomingfacts. In terms of the Kintsch
and van Dijk model, the knowledge structure guides the comprehenderin
identifying the important propositions in the text, by alerting the compre-
henderto the propositions that are normally of central importance.
A number of studies have shown that the possession of appropriate

knowledgestructures accounts for the advantage that experts have over nov-
ices in recalling material within their field of expertise. A study by Spilich,
Vesonder, Chiesi, and Voss (1979) illustrates the typical finding. In this
study, participants listened to a “broadcast” of a fictitious baseball game.
They were then asked to recall the key events. Figure 12 shows the number
and type of propositions recalled by people whoeither did or did not have
good knowledge of the gameof baseball. The experienced baseball watchers

had much better memory for propositions that were important in under-

standing the game(e.g., “A runner was tagged out at second base.”) but did

not have superior memoryfor propositions that were irrelevant to the game
(e.g., “The umpire wastall.”).

The idea that expertise guides construction of a macroproposition can be

extended beyondthe conceptof an expert as a subject matter specialist, to in-

clude expert knowledgeaboutdiscourseitself. The rules that Kintsch and van

Dijk present for discourse comprehension represent a form of expertise. The

rules assume that a discourse generator has followed certain rules in con-

structing a discourse. If the rules for generation have indeed been followed,

the comprehension rules will construct an appropriate macroproposition.
The expertise in the rules, though,is essentially a formulation of the expertise

that Kintsch, van Dijk, and their colleagues had. To what extent do their

rules of analysis represent psychological descriptions of people in general?

Brown and Day (1983) examined summariesofarticles that had been pre-

pared by people whovaried widely in general verbal competence, from sev-

enth grade students to college rhetoric teachers. The summaries made bythe

more experienced comprehenders closely conformed to those that would

have been created by a “comprehending machine” programmed to use

Kintsch and van Dijk’s rules. Brown and Day’s comprehendershad neverre-
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FIGURE 12. Amountof information recalled from an accountof a baseball game as a

function of relevance of the information to the game and the comprehender’s familiarity

with baseball.

ceived explicit training in the Kintsch and van Dijk rules, so the results can

also be used to argue for the psychological reality of the rules themselves.

There are manysituations in which a person does not need to demonstrate

that he or she has understood a message until some time after the message has

been comprehended. University examinationsare a case in point; professors

usually test students’ comprehensionof a lecture days or weeksafterthe lec-

ture has been delivered. In terms of our normal functioning, then,the ability

to store information presentedin a discourse hasto be consideredpartofef-

fective verbal comprehension. On the other hand,the ability to rememberis

notidentical to the ability to comprehend verbal messages. Dramatic cases of

the dissociation between the two can be found in neuropsychological cases.

Patients who have suffered damage to the hippocampus, a mid-brain struc-

ture that is evidently crucial for human memory, can comprehenddiscourse

reasonably well as it is presented to them, but are quite unableto recall that

they have participated in a conversation (or read a message)if they are tested
 

*A similar point has been made about discourse production. Elementary school children

whoare considered good writers provide explicit rules to identify coreferences, such as the use of

the terms “Ivan,” “he,” and “the tsar” in example (28). The provision of explicit coreferences aids

a comprehenderusing the Kintsch and van Dijk rules to extract the correct propositions from a
text (Bartlett, 1984).
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after doing unrelated activities. The amnesia apparently develops within mi-

nutes, and is permanent.Itis as if the patients had lost the ability to consoli-

date informationinto long term memoryin retrievable forms. A similar but

sometimes less dramatic syndromeis observed in Korsakoff’s psychosis, a

possible consequence of severe alcoholism (Kolb & Wishaw, 1980).°

Kintsch and van Dijk treat the storage of propositional information into

long term memoryas a probabilistic event. Information in working memory

is moved into long term memoryata fixed rate, independent of the contentof

the information being stored. Important information in a discourse will be

more likely to be remembered than unimportant information, because the

central propositions in a text spend more time in working memory than do

the less important propositions. Importance perse is not assumedto influ-

ence the storage process.

Dixon, Hultsch, Simon, and von Eye (1984) report a study that shows how

individual differences in strictly verbal comprehension processes mayinter-

act with individual differences in effectiveness of memorization. The study

was based on two separate observations. Scores on verbal intelligence tests

decline very little over the adult life span. On the other hand,the ability to

transfer arbitrary information (e.g., paired associates lists) from working

memory into long term memory does seem to decrease with age (Carik,

1977). Dixon et al. reasoned that people of high verbal ability would usestrat-

egies that kept the main topics of a passage in working memoryfor a long

time, and that this effect would be independent of age. Hence, high verbal

subjects should be able to recall the central themes of a story regardless of

their age, becauseall subjects would reach a performanceceiling for storing

of such information. Memoryfor minor themesin a passage should be more

sensitive to age, because the less important propositions, being in working

memory for a shorter time, would be moresensitive to age-related losses in

the effectiveness of memory consolidation. People of low verbalability, on

the other hand, should beless able to locate and retain in working memory

the central theme of a passage, and hence should show age influences on

memoryfor both central and peripheral themes.

Dixon et al. tested the ability to recall story information in people of high

and low verbal ability. Their participants were from 20 to 60 yearsold. Figure
13 plots the recall of propositional information as a function of age, verbal

ability, and level of importance of a proposition in the logic of the passage.

The pattern ofrecall is exactly that anticipated by Dixonet al., and can be of-

 
‘The nature of the memorydeficit in both the hippocampal and the Korsakoff patients is

complex. Both groups show a dramatic loss of the ability to recount details of an episode that

they have experienced. This includes what would normally be called comprehension of a

message. On the other hand,there is considerable evidence that these patients do record somein-

formation about events that they have experienced, even though they are unableto recall the

events themselves.
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fered as evidence that there are individual differences in the capacity to con-

solidate information in long term memory,andthat these differences do in-

fluence memoryfor verbal messages. The overall effect of variations in the

memoryprocess uponthe retention of important information, however,will

depend greatly on the strategy used to comprehend the message as it is

received.

Pragmatic Comprehension

Van Dijk and Kintsch (1983) distinguish between a comprehender’s internal

representation ofa linguistic message (the text model) andhisor herinternal

representation of the situation in which the messageis received(the situation

model). When people develop a situational representation from a discourse,

they often include in the representation both the information that is pre-

sented in the discourse and some information that is implied by it. Some of

the inferences are based on knowledgestructures about the situation being

described, as wasillustrated by example (37), the restaurant script. In other

cases, the situational model will be amplified by representations that are

based upon inferences from combinations of information explicitly pre-

sented in the discourse. Forinstance, if you are told

(38) John had to go to threestores to find an aspirin yesterday.

it is reasonable to infer that John had a headache. Makingsuch inferences to

expand the situational model is an attention-demanding process, and must

competewith the information processing resources required to construct the

text model. The processing required for the text model must take priority, be-

cause text analysis has to keep up with text presentation. Thus, if “lower

level” linguistic text processing is madedifficult, the effects mayfirst be seen

in failures of pragmatic processing that depends upon drawing inferences

from the text. This point will be familiar to anyone whohastried to under-

stand a lecture ona difficult topic, delivered by a lecturer who speaksrapidly,

or who has an unfamiliar accent.

Several studies of the role of inference in verbal comprehension provide

evidence that pragmatic processing does have lower precedence than message

analysis, and that the combination of processing priority and individualdif-

ferences in various aspects of information processing will lead to characteris-

tic individual differences in total comprehension. The studies in question

utilize the fact that passage comprehension dependsupontheuse of informa-

tion that appears in a passage, explicitly, and information that can be

inferred from a passage by combiningexplicitly presented information with

common knowledge. Example (39)illustrates this.

(39) Downstairs there are three rooms:the kitchen, the dining-room

and the sitting room. Thesitting-roomis in front of the house and the
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kitchen andthe dining-room face onto the vegetable garden at the back

of the house. The noise of the traffic is very disturbing in the front

rooms. Motheris in the kitchen cooking and Grandfatheris reading the

paperin the sitting-room. Thechildren are at school and won’t be home
till tea-time.

Question (40) can be answered from informationthatis explicitly present in

the text, while question (41) requires an inference

(40) What is Mother doing? (cooking).

(41) Whois being disturbed by the traffic? (Grandfather).

Figure 14 showstheresults of a study in which people answeredbothinfer-

ential and verbatim questions (Cohen, 1979). The subjects varied in educa-

tion (advanced degreesvs. high school diplornaorless) and age (20svs. over

65). Clearly, there are striking effects of both age and education. These are

consistent with the view that better-educated people possess moreefficient

rules for constructing discourse representations in working memory, and

that older people are slower in the “mechanics” both of moving information
aroundin the mind andin consolidating information into long term memory.
The effects are strongest on those questions that require inferencing,i.e.,
when the meaningof a discourseis largely determined by pragmatic infer-
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ences. Cohen’s results have been supported and amplified upon in subse-

quent research (Cohen 1981; Light, Zelinski, & Moore, 1982).

CONCLUSIONS

Whatis verbal ability? The theoretical position taken here is that the “di-

mension”of verbal ability is the result of a somewhatcorrelated collection of

skills. These skills depend upon a variety of more primitive psychological

processes, including access to lexical memory,the ability to manipulatein-

formation in working memory,rapid consolidation of information into long

term memory,the possession of knowledge about how to processdiscourse in

general, and the possession of knowledge aboutthe topic of the discourse be-

ing comprehended. Some of these primitive processes can be thoughtof as

properties of the brain, closely linked to physiological processes. The effi-

ciency of consolidation of information into long term memoryis an example.

Other processes, such as the use of restaurant scripts, are learned, and are

highly culture dependent.

If the various verbal skills are distinct, why do psychometric analyses so

consistently uncovera single dimension of verbal ability? It could be thatall

the primitive processes of language comprehensionare derived from a single

underlying brain process, and that the expressions of different processes are

correlated across individuals for that purpose. There may be sometruth to

this, but it is an impossible proposition to prove or disprove.* The moder-

ately high correlations between measures of different aspects of language

comprehension could also be explained byinteractions between them as they

are developed. Being able to consolidate information into permanent mem-

ory rapidly would aid in the acquisition of lexical knowledge, and increasing

one’s vocabulary would increase one’s ability to develop text and situation

models, which could be usedto increase lexical knowledge by defining new

wordsin context. Since each subprocess of verbal comprehension encourages

the developmentofthe others,it is hardly surprising that, across individuals,

the same people are usually good at different verbal comprehensiontasks.

The conceptof interaction between languageskills is not confinedto devel-

opment. Similar interactions between skills occur in performance. Being bet-

ter at one of the subprocesses of comprehension frees one’s resourcesto at-

tack the other processes. Throughout, the goalis total comprehension,a goal

 

If a single underlying biological function, such as speed of neural impulse transmission, were

the only factor determining individual differences in verbal comprehension, then measuresofall

aspects of comprehension would be perfectly correlated. They are not. Refer back to the

discussion of the partial statistical independence of lexical access and sentence verification

measures.
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that is attacked until we have no more mental energy left. The argument can
be summedupby an anecodote, which happensto be a true one. A husband
and wife were discussing a book.

(42) He: I’m notsure I knowit.

She: The Fascinating Woman? I’ve shown you excerpts.

For the sake of the marriage, one hopes she had. But only the highly verbal
husband wouldrealize what she claimed to have done.
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R

Raven Advanced Progressive Matrices, 45,

46, 158, 159, 162, 167-169, 240, 256,

315, 317-319, 333

Raven Coloured Progressive Matrices, 312,

317

Raven Standard Progressive Matrices, 43-46,

49, 57, 77, 86, 88-90, 102, 113, 158,

159, 162, 163, 167, 203, 238, 243,

252-254, 284, 317, 319, 334

Reaction times (RT), see also Hick paradigm,

parameters of, 1-6, 9-12, 15, 16-18,

22, 24, 25, 29, 32, 38, 40, 41, 56, 60, 69,

70, 78, 79, 81, 86, 89-96, 101-175,

177-199, 209-213, 242, 244, 252-257,

262, 266, 274, 367

correlations with intelligence, 1-6, 8, 10, 18,

38, 41-49, 51, 56-58, 60, 74, 75, 81-91,

94-96, 102, 107, 109, 127, 130, 133,

151-172, 182, 183, 185-192, 196-198,

253-257, 259, 272-275, 283, 285,

289-292, 297

intraindividual variability of, 38-40, 45, 46,

48, 56, 84-87, 89-91, 110, 111,

134-138, 146, 154-159, 161, 165-167,

185, 191, 193, 194, 253-257, 274, 288,

289

reliability of measures of, 212, 213

tests of, 5, 6, 8, 10-17, 24, 25, 38, 39, 46, 49,

51, 74, 75, 81, 83, 96, 102, 302, 338

choice reaction time, 13, 28-30, 38,

43-45, 49, 57, 58, 60, 75, 79-81,



103-105, 107, 117, 118, 126, 160,
178-198, 272-275, 280-283, 285-291,
332

relative complexity of, 6, 57, 160-167,
186, 274, 275, 287, 291

simple reaction time, 13, 38, 43, 45, 49,
58, 75, 103-105, 117, 118, 160, 177,
195, 196

speed-accuracy trade-off, 169-171, 194,
196, 259, 281

Reading, 353, 357, 365, 366, 369, 370, 372,
373

reading comprehension, 159, 162, 163, 356,
358

scores ontests of, 46, 348, 356

S
Scholastic Aptitude Test (SAT), 158, 159, 162,

163, 240, 335

School and College Aptitude Test (SCAT),

158, 159, 162, 163

School performance, see Academic

achievement

Sentence verification, 4, 46, 259, 362-364,
366, 367

Sex differences, 2, 13

in mentalabilities, 13-18

in inspection times, 296

in reaction times, 2, 13-18

Shepard-Metzler spatial rotation paradigm,
210-212, 220

Short-term memory (STM),2, 12, 13, 15-18,
35, 36, 38, 79, 210, 215, 219, 220, 263,
349, 350, 361, 362, 365, 366, 368-370,
376-379, 384, 388

capacity of, 2, 36, 55, 249, 286, 299, 362,
368, 370, 380

decay of informationin, 2, 35

serial recall tasks, 211 |
primacy andrecencyeffects, 211, 212

short-term acquisition andretrieval factor
(SAR), 206, 214, 218, 219, 222, 223,
226-228, 231-234

speed of scanning information in,see also
Sternberg’s probe-recognition

paradigm,12, 15, 16-18, 38, 81, 267
Simplex pattern of correlations, 139-141

Overlap modelof, 139-141

Socio-economicstatus, 21, 22, 59, 112
Spearman’s conceptsof eduction of relations

and correlates, 58, 59, 73, 102, 224
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Spearman’s g, see General intelligence
Spearman’s modelofmental energy, 53, 55, 73
Spearman’s two-factor theory, 73, 242
Speed-accuracytrade-off, see Reaction times,

tests of

Speed of information-processing, see
Cognitive processes, speed of
execution of

Stanford-BinetIntelligence Scale, 57, 72, 113,
117, 215, 317, 348

Sternberg’s probe recognition paradigm,see
also Short-term memory, speed of
scanning informationin, 4, 38, 39, 45,
49, 50, 57, 81, 83, 96, 168, 209-211

Sternberg’s triarchic theoryofintelligence, see
also Componential analysis, 262,
271-292

componential subtheory, 275-277,
284-290, 292

contextual subtheory, 275-284, 291
experiential subtheory, 275, 277 , 290-292

Structure of Intellect, 27, 28
Eysenck’s model of, 27, 28, 298
Guilford’s model of, 204-208, 245 , 298

T

Temporalstyle, 271, 280, 281, 292, 297
Terman Concept Mastery Test, 158, 159, 162,

163, 167

Thomson’s bond theory, 53, 183
Transmission errors, see Eysenck’s model of

errors in transmission

Twins, 8-12, 18

V

Verbalability, 14, 49, 258, 260, 284, 313, 333,
335, 347-389

Verbal comprehension, 347-389

Verbal knowledge, 216

Visualization (V,), 202, 206, 214, 215

WwW
Wechsler Adult Intelligence Scale (WAIS), 14,

45, 46, 48, 52, 57, 72, 77, 88, 102, 114,
157-159, 162, 163, 167, 217, 256, 306,
307, 309, 310, 315, 317-319, 333, 334,
337, 338, 340

Wechsler Adult Intelligence Scale— Revised
(WAIS-R), 188, 238, 319, 334

Wechsler Intelligence Scale for Children

(WISC), 44, 72, 76, 159
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WechslerIntelligence Scale for Children — 221, 238

Revised (WISC-R), 47, 72, 113, 149, Working memory, see Short-term memory

160, 309, 315, 317

Woodcock-Johnson Psycho-Educational Y

Battery (WOJ), 202, 203, 213-219, Yerkes-Dodson Law, 171, 172


